重復以上步驟,分別對Meml?Mem4分配模型并建立總線時序關系,置完其中一個,單擊0K按鈕并在彈出窗口單擊Copy按鈕,將會同時更新其他Memory 模塊。
3.分配互連模型有3種方法可設置互連部分的模型:第1種是將已有的SPICE電路模型或S參數模型分配給相應模塊;第2種是根據疊層信息生成傳輸線模型;第3種是將互連模塊與印制電路板或封裝板關聯,利用模型提取工具按需提取互連模型。對前兩種方法大家比較熟悉,這里以第3種方法為例介紹其使用過程。 DDR3內存有哪些常見的容量大小?信號完整性測試DDR3測試價格優惠

DDR 系統概述
DDR 全名為 Double Data Rate SDRAM ,簡稱為 DDR。DDR 本質上不需要提高時鐘頻率就能加倍提高 SDRAM 的速度,它允許在時鐘的上升沿和下降沿讀/寫數據,因而其數據速率是標準 SDRAM 的兩倍,至于地址與控制信號與傳統 SDRAM 相同,仍在時鐘上升沿進行數據判決。 DDR 與 SDRAM 的對比DDR 是一個總線系統,總線包括地址線、數據信號線以及時鐘、控制線等。其中數據信號線可以隨著系統吞吐量的帶寬而調整,但是必須以字節為單位進行調整,例如,可以是 8 位、16 位、24 位或者 32 位帶寬等。 所示的是 DDR 總線的系統結構,地址和控制總線是單向信號,只能從控制器傳向存儲芯片,而數據信號則是雙向總線。
DDR 總線的系統結構DDR 的地址信號線除了用來尋址以外,還被用做控制命令的一部分,因此,地址線和控制信號統稱為地址/控制總線。DDR 中的命令狀態真值表。可以看到,DDR 控制器對存儲系統的操作,就是通過控制信號的狀態和地址信號的組合來完成的。 DDR 系統命令狀態真值表 PCI-E測試DDR3測試高速信號傳輸DDR3一致性測試是否適用于超頻內存模塊?

可以通過AllegroSigritySI仿真軟件來仿真CLK信號。
(1)產品選擇:從產品菜單中選擇AllegroSigritySI產品。
(2)在產品選擇界面選項中選擇AllegroSigritySI(forboard)。
(3)在AllegroSigritySI界面中打開DDR_文件。
(4)選擇菜單Setup-*Crosssection..,設置電路板層疊參數。
將DDRController和Memory器件的IBIS模型和文件放在當前DDR_文件的同一目錄下,這樣,工具會自動査找到目錄下的器件模型。
瀏覽選擇控制器的IBIS模型,切換到Bus Definition選項卡,單擊Add按鈕添加一 組新的Buso選中新加的一行Bus使其高亮,將鼠標移動到Signal Names下方高亮處,單擊 出現的字母E,打開Signal列表。勾選組數據和DM信號,單擊0K按鈕確認。
同樣,在Timing Ref下方高亮處,單擊出現的字母E打開TimingRef列表。在這個列表 窗口左側,用鼠標左鍵點選DQS差分線的正端,用鼠標右鍵點選負端,單擊中間的“>>”按 鈕將選中信號加入TimingRefs,單擊OK按鈕確認。
很多其他工具都忽略選通Strobe信號和時鐘Clock信號之間的時序分析功能,而SystemSI可以分析包括Strobe和Clock在內的完整的各類信號間的時序關系。如果要仿真分析選通信號Strobe和時鐘信號Clock之間的時序關系,則可以設置與Strobe對應的時鐘信號。在Clock 下方的高亮處,單擊出現的字母E打開Clock列表。跟選擇與Strobe -樣的操作即可選定時 鐘信號。 DDR3一致性測試可以幫助識別哪些問題?

在接下來的Setup NG Wizard窗口中選擇要參與仿真的信號網絡,為這些信號網絡分組并定義單個或者多個網絡組。選擇網絡DDR1_DMO.3、DDR1_DQO.31、DDR1_DQSO.3、 DDRl_NDQS0-3,并用鼠標右鍵單擊Assign interface菜單項,定義接口名稱為Data,
設置完成后,岀現Setup NG wizard: NG pre-view page窗口,顯示網絡組的信息,如圖 1-137所示。單擊Finish按鈕,網絡組設置完成。
單擊設置走線檢查參數(Setup Trace Check Parameters),在彈出的窗口中做以下設 置:勾選阻抗和耦合系數檢查兩個選項;設置走線耦合百分比為1%,上升時間為lOOps;選 擇對網絡組做走線檢查(Check by NetGroup);設置交互高亮顯示顏色為白色。 如何確保DDR3內存模塊的兼容性進行一致性測試?PCI-E測試DDR3測試高速信號傳輸
DDR3內存的一致性測試可以修復一致性問題嗎?信號完整性測試DDR3測試價格優惠
有其特殊含義的,也是DDR體系結構的具體體現。而遺憾的是,在筆者接觸過的很多高速電路設計人員中,很多人還不能夠說清楚這兩個圖的含義。在數據寫入(Write)時序圖中,所有信號都是DDR控制器輸出的,而DQS和DQ信號相差90°相位,因此DDR芯片才能夠在DQS信號的控制下,對DQ和DM信號進行雙沿采樣:而在數據讀出(Read)時序圖中,所有信號是DDR芯片輸出的,并且DQ和DQS信號是同步的,都是和時鐘沿對齊的!這時候為了要實現對DQ信號的雙沿采樣,DDR控制器就需要自己去調整DQS和DQ信號之間的相位延時!!!這也就是DDR系統中比較難以實現的地方。DDR規范這樣做的原因很簡單,是要把邏輯設計的復雜性留在控制器一端,從而使得外設(DDR存儲心片)的設計變得簡單而廉價。因此,對于DDR系統設計而言,信號完整性仿真和分析的大部分工作,實質上就是要保證這兩個時序圖的正確性。信號完整性測試DDR3測試價格優惠