隨著AI大模型向邊緣端遷移,倍聯德正布局兩大方向:邊緣大模型:研發千億參數模型的輕量化版本,支持在邊緣設備上運行多模態推理任務。6G-邊緣融合:與華為合作研發太赫茲通信模塊,結合TSN時間敏感網絡,為L5級自動駕駛提供10Gbps級實時數據傳輸能力。“邊緣計算不是云端的替代者,而是AI能力的延伸。”倍聯德CTO李明表示,“通過精確的分工策略,我們正在讓每一輛自動駕駛汽車、每一臺工業機器人都擁有一個‘本地化超級大腦’。”在這場智能變革中,邊緣計算與AI的深度融合,正重新定義技術與產業的邊界。邊緣計算的發展需要跨行業的合作與協同。國產邊緣計算網關

面對企業跨園區、跨地域的算力調度需求,倍聯德創新提出“中心云-邊緣云-終端設備”三級協同架構。其自主研發的MEC編排器可動態分配算力資源:在深圳某三甲醫院的遠程手術場景中,系統自動將4K影像渲染任務分配至院內邊緣節點,而AI病理分析模型則運行于云端,使單臺手術數據傳輸量減少92%,同時保障99.99%的可靠性。這一架構的突破性在于“算力隨需而動”。在東莞某電子廠的柔性生產線改造項目中,倍聯德方案支持200個邊緣節點根據訂單類型自動切換算法模型,使產線換型時間從4小時縮短至15分鐘,設備綜合效率(OEE)提升18%。超市邊緣計算云平臺在智能制造中,邊緣計算可實時監測設備狀態并觸發預警,避免生產線停機風險。

倍聯德積極參與邊緣計算安全標準化工作,作為重要成員參與編制《工業邊緣計算安全技術要求》等3項國家標準。公司聯合中國信通院、華為等機構發起“邊緣計算安全聯盟”,推動設備認證、漏洞共享、應急響應等機制落地。截至2025年6月,聯盟已吸納120余家企業,完成2000余款邊緣設備的安全評估。在智能電網領域,倍聯德與國家電網合作構建“云-邊-端”協同防護體系,通過邊緣節點部署輕量化入侵檢測系統,將安全事件響應時間從分鐘級縮短至秒級。在智能制造場景中,公司為富士康打造的“安全即服務”平臺,集成威脅情報、漏洞管理、合規檢查等功能,使客戶安全運維成本降低40%。
邊緣計算通過在車輛本地或路側單元部署計算節點,將數據處理下沉至數據源附近。這一架構變革帶來三大重要優勢:毫秒級響應:倍聯德為某車企定制的邊緣計算平臺,將傳感器數據預處理、目標檢測、路徑規劃等任務在本地完成,決策延遲壓縮至15毫秒以內。在高速公路緊急避障測試中,系統提前1.2秒觸發制動,較云端方案碰撞風險降低82%。帶寬優化:邊緣節點通過特征提取技術,將原始數據量壓縮90%以上。例如,某物流園區自動駕駛卡車項目采用倍聯德邊緣設備后,每日數據傳輸量從12TB降至1.2TB,網絡帶寬成本節省75%。高可靠性:在深圳某港口無人集卡項目中,倍聯德邊緣計算節點支持斷網自主運行,即使云端連接中斷,車輛仍能基于本地地圖和實時感知數據完成裝卸作業,系統可用性達99.99%。邊緣計算有助于減少數據中心的流量負載。

在5G網絡與人工智能技術的雙重驅動下,邊緣計算正從概念驗證走向規模化商用,成為推動工業互聯網、智慧城市、智能醫療等領域變革的重要引擎。據IDC預測,到2026年,全球邊緣計算市場規模將突破1200億美元,其中中國市場的年復合增長率將超過35%。作為國家高新企業,深圳市倍聯德實業有限公司憑借其在邊緣計算設備研發、場景化解決方案及生態協同領域的創新突破,正重新定義邊緣計算的技術邊界與商業價值。傳統云計算架構下,數據需上傳至云端處理,導致工業控制、自動駕駛等場景面臨200毫秒以上的延遲,難以滿足實時性要求。倍聯德通過“異構計算+本地化AI”技術,將關鍵任務處理能力下沉至邊緣節點,實現毫秒級響應。邊緣計算正在逐步改變數據處理的方式。廣東移動邊緣計算經銷商
邊緣計算正在改變我們對分布式系統的看法。國產邊緣計算網關
倍聯德自主研發的EdgeAI平臺,將聯邦學習技術與邊緣計算深度融合:動態負載均衡:根據5G網絡信號強度、設備負載等參數,自動調整邊緣節點與云端的任務分配,確保服務連續性;輕量化模型部署:通過模型壓縮技術,將工業質檢、安全監控等AI模型的體積縮小90%,可在邊緣節點直接運行,減少數據回傳;安全增強:集成國密SM2/SM4加密算法,支持區塊鏈存證,確保邊緣數據傳輸與存儲的安全性。在某化工企業的安全監控項目中,EdgeAI平臺通過分析邊緣節點采集的毒氣傳感器數據,提前15天預警潛在泄漏風險,避免重大事故發生。國產邊緣計算網關