為了克服大的通道損耗,PCle5.0接收端的均衡能力也會更強一些。比如接收端的 CTLE均衡器采用了2階的CTLE均衡,其損耗/增益曲線有4個極點和2個零點,其直流增益可以在-5~ - 15dB之間以1dB的分辨率進行調整,以精確補償通道損耗的 影響。同時,為了更好地補償信號反射、串擾的影響,其接收端的DFE均衡器也使用了更復 雜的3-Tap均衡器。對于發射端來說,PCle5.0相對于PCIe4.0和PCIe3.0來說變化不大, 仍然是3階的FIR預加重以及11種預設好的Preset組合。PCI-E4.0的標準什么時候推出?有什么變化?校準PCI-E測試系列

相應地,在CC模式下參考時鐘的 抖動測試中,也會要求測試軟件能夠很好地模擬發送端和接收端抖動傳遞函數的影響。而 在IR模式下,主板和插卡可以采用不同的參考時鐘,可以為一些特殊的不太方便進行參考 時鐘傳遞的應用場景(比如通過Cable連接時)提供便利,但由于收發端參考時鐘不同源,所 以對于收發端的設計難度要大一些(比如Buffer深度以及時鐘頻差調整機制)。IR模式下 用戶可以根據需要在參考時鐘以及PLL的抖動之間做一些折中和平衡,保證*終的發射機 抖動指標即可。圖4.9是PCIe4.0規范參考時鐘時的時鐘架構,以及不同速率下對于 芯片Refclk抖動的要求。校準PCI-E測試系列PCI-E4.0的發射機質量測試?

是用矢量網絡分析儀進行鏈路標定的典型連接,具體的標定步驟非常多,在PCIe4.0 Phy Test Specification文檔里有詳細描述,這里不做展開。
在硬件連接完成、測試碼型切換正確后,就可以對信號進行捕獲和信號質量分析。正式 的信號質量分析之前還需要注意的是:為了把傳輸通道對信號的惡化以及均衡器對信號的 改善效果都考慮進去,PCIe3.0及之后標準的測試中對其發送端眼圖、抖動等測試的參考點 從發送端轉移到了接收端。也就是說,測試中需要把傳輸通道對信號的惡化的影響以及均 衡器對信號的改善影響都考慮進去。
關于各測試項目的具體描述如下:·項目2.1Add-inCardTransmitterSignalQuality:驗證插卡發送信號質量,針對2.5Gbps、5Gbps、8Gbps、16Gbps速率。·項目2.2Add-inCardTransmitterPulseWidthJitterTestat16GT/s:驗證插卡發送信號中的脈沖寬度抖動,針對16Gbps速率。·項目2.3Add-inCardTransmitterPresetTest:驗證插卡發送信號的Preset值是否正確,針對8Gbps和16Gbps速率。·項目2.4AddinCardTransmitterInitialTXEQTest:驗證插卡能根據鏈路命令設置成正確的初始Prest值,針對8Gbps和16Gbps速率。·項目2.5Add-inCardTransmitterLinkEqualizationResponseTest:驗證插卡對于鏈路協商的響應時間,針對8Gbps和16Gbps速率。pcie3.0和pcie4.0物理層的區別在哪里?

校準完成后,在進行正式測試前,很重要的一點就是要能夠設置被測件進入環回模式。 雖然調試時也可能會借助芯片廠商提供的工具設置環回,但標準的測試方法還是要基于鏈 路協商和通信進行被測件環回模式的設置。傳統的誤碼儀不具有對于PCle協議理解的功 能,只能盲發訓練序列,這樣的缺點是由于沒有經過正常的鏈路協商,可能會無法把被測件 設置成正確的狀態。現在一些新型的誤碼儀平臺已經集成了PCIe的鏈路協商功能,能夠 真正和被測件進行訓練序列的溝通,除了可以有效地把被測件設置成正確的環回狀態,還可 以和對端被測設備進行預加重和均衡的鏈路溝通。PCI-E硬件測試方法有那些辦法;校準PCI-E測試系列
PCIE 5.0,速率翻倍vs性能優化;校準PCI-E測試系列
在之前的PCIe規范中,都是假定PCIe芯片需要外部提供一個參考時鐘(RefClk),在這 種芯片的測試中也是需要使用一個低抖動的時鐘源給被測件提供參考時鐘,并且只需要對 數據線進行測試。而在PCIe4.0的規范中,新增了允許芯片使用內部提供的RefClk(被稱 為Embeded RefClk)模式,這種情況下被測芯片有自己內部生成的參考時鐘,但參考時鐘的 質量不一定非常好,測試時需要把參考時鐘也引出,采用類似于主板測試中的Dual-port測 試方法。如果被測芯片使用內嵌參考時鐘且參考時鐘也無法引出,則意味著被測件工作在 SRIS(Separate Refclk Independent SSC)模式,需要另外的算法進行特殊處理。校準PCI-E測試系列