相應地,在CC模式下參考時鐘的 抖動測試中,也會要求測試軟件能夠很好地模擬發送端和接收端抖動傳遞函數的影響。而 在IR模式下,主板和插卡可以采用不同的參考時鐘,可以為一些特殊的不太方便進行參考 時鐘傳遞的應用場景(比如通過Cable連接時)提供便利,但由于收發端參考時鐘不同源,所 以對于收發端的設計難度要大一些(比如Buffer深度以及時鐘頻差調整機制)。IR模式下 用戶可以根據需要在參考時鐘以及PLL的抖動之間做一些折中和平衡,保證*終的發射機 抖動指標即可。圖4.9是PCIe4.0規范參考時鐘時的時鐘架構,以及不同速率下對于 芯片Refclk抖動的要求。PCI-E PCI-E 2.0,PCI-E 3.0插口區別是什么?信息化PCI-E測試方案商

為了克服大的通道損耗,PCle5.0接收端的均衡能力也會更強一些。比如接收端的 CTLE均衡器采用了2階的CTLE均衡,其損耗/增益曲線有4個極點和2個零點,其直流增益可以在-5~ - 15dB之間以1dB的分辨率進行調整,以精確補償通道損耗的 影響。同時,為了更好地補償信號反射、串擾的影響,其接收端的DFE均衡器也使用了更復 雜的3-Tap均衡器。對于發射端來說,PCle5.0相對于PCIe4.0和PCIe3.0來說變化不大, 仍然是3階的FIR預加重以及11種預設好的Preset組合。信息化PCI-E測試方案商被測件發不出標準的PCI-E的一致性測試碼型,為什么?

其中,電氣(Electrical) 、協議(Protocol) 、配置(Configuration)等行為定義了芯片的基本 行為,這些要求合在一起稱為Base規范,用于指導芯片設計;基于Base規范,PCI-SIG還會 再定義對于板卡設計的要求,比如板卡的機械尺寸、電氣性能要求,這些要求合在一起稱為 CEM(Card Electromechanical)規范,用以指導服務器、計算機和插卡等系統設計人員的開 發。除了針對金手指連接類型的板卡,針對一些新型的連接方式,如M.2、U.2等,也有一 些類似的CEM規范發布。
PCIe 的物理層(Physical Layer)和數據鏈路層(Data Link Layer)根據高速串行通信的 特點進行了重新設計,上層的事務層(Transaction)和總線拓撲都與早期的PCI類似,典型 的設備有根設備(Root Complex) 、終端設備(Endpoint), 以及可選的交換設備(Switch) 。早 期的PCle總線是CPU通過北橋芯片或者南橋芯片擴展出來的,根設備在北橋芯片內部, 目前普遍和橋片一起集成在CPU內部,成為CPU重要的外部擴展總線。PCIe 總線協議層的結構以及相關規范涉及的主要內容。使用PCI-E協議分析儀能不能直接告訴我總線上的協議錯誤?

按照測試規范的要求,在發送信號質量的測試中,只要有1個Preset值下能夠通過信 號質量測試就算過關;但是在Preset的測試中,則需要依次遍歷所有的Preset,并依次保存 波形進行分析。對于PCIe3.0和PCIe4.0的速率來說,由于采用128b/130b編碼,其一致性測試碼型比之前8b/10b編碼下的一致性測試碼型要復雜,總共包含36個128b/130b的 編碼字。通過特殊的設計, 一致性測試碼型中包含了長“1”碼型、長“0”碼型以及重復的“01” 碼型,通過對這些碼型的計算和處理,測試軟件可以方便地進行預加重、眼圖、抖動、通道損 耗的計算。 11是典型PCle3.0和PCIe4.0速率下的一致性測試碼型。PCI-E硬件測試方法有那些辦法;貴州數字信號PCI-E測試
PCI-E4.0的發射機質量測試?信息化PCI-E測試方案商
PCIe4.0的接收端容限測試在PCIel.0和2.0的時代,接收端測試不是必需的,通常只要保證發送端的信號質量基本就能保證系統的正常工作。但是從PCle3.0開始,由于速率更高,所以接收端使用了均衡技術。由于接收端更加復雜而且其均衡的有效性會影響鏈路傳輸的可靠性,所以接收端的容限測試變成了必測的項目。所謂接收容限測試,就是要驗證接收端對于惡劣信號的容忍能力。這就涉及兩個問題,一個是惡劣信號是怎么定義的,另一個是怎么判斷被測系統能夠容忍這樣的惡劣信號。信息化PCI-E測試方案商