光學領域上面較成功的應用科學研究主要集中在兩個方面:一是基于MOEMS的新型顯示、投影設備,主要研究如何通過反射面的物理運動來進行光的空間調制,典型標識為數字微鏡陣列芯片和光柵光閥。二是通信系統,主要研究通過微鏡的物理運動來控制光路發生預期的改變,較成功的有光開關調制器、光濾波器及復用器等光通信器件。MOEMS是綜合性和學科交叉性很強的高新技術,開展這個領域的科學技術研究,可以帶動大量的新概念的功能器件開發。自研超聲收發芯片輸出電壓達 ±100V、電流 1A,部分性能指標超越國際品牌 TI。什么是MEMS微納米加工方法

通過MEMS技術制作的生物傳感器,圍繞細胞分選檢測、生物分子檢測、人工聽覺微系統等方向,突破了高通量細胞圖形化、片上細胞聚焦分選、耳蝸內聲電混合刺激、高時空分辨率相位差分檢測等一批具有自主知識產權的關鍵技術,取得了一批原創性成果,研制了具有世界很高水平的高通量原位細胞多模式檢測系統、流式細胞儀、系列流式細胞檢測芯片等檢測儀器,打破了相關領域國際廠商的技術封鎖和壟斷??傊?,面向醫療健康領域的重大需求,經過多年持續的努力,我們取得一系列具有國際先進水平的科研成果,部分技術處于國際前列地位,其中多項技術尚屬國際開創。青海MEMS微納米加工批發微流控與金屬片電極鑲嵌工藝,解決流道與電極集成的接觸電阻問題并提升檢測穩定性。

基于MEMS技術的SAW器件:聲表面波(SAW)傳感器是近年來發展起來的一種新型微聲傳感器,是種用聲表面波器件作為傳感元件,將被測量的信息通過聲表面波器件中聲表面波的速度或頻率的變化反映出來,并轉換成電信號輸出的傳感器。聲表面波傳感器能夠精確測量物理、化學等信息(如溫度、應力、氣體密度)。由于體積小,聲表面波器件被譽為開創了無線、小型傳感器的新紀元,同時,其與集成電路兼容性強,在模擬數字通信及傳感領域獲得了廣泛的應用。聲表面波傳感器能將信號集中于基片表面、工作頻率高,具有極高的信息敏感精度,能迅速地將檢測到的信息轉換為電信號輸出,具有實時信息檢測的特性,另外,聲表面波傳感器還具有微型化、集成化、無源、低成本、低功耗、直接頻率信號輸出等優點。
生物醫療傳感芯片對結構精度、生物兼容性的高要求,讓 MEMS 微納米加工成為其制造技術,深圳市勃望初芯半導體科技有限公司的加工服務在此領域成效。以公司產品 “芯棄疾 JX-8B 單分子 ELISA 芯片” 為例,加工過程需通過 MEMS 技術實現多重精密結構:首先在硅襯底上刻蝕微米級微反應池(容積 50-100nL),減少樣品用量;然后通過濺射鍍膜與 EBL 光刻,制作納米級捕獲抗體陣列(點徑 100nm),提升抗體與抗原的結合效率;封裝微流道與檢測電極,實現 “樣品進 - 結果出” 的一體化檢測。該芯片的加工精度直接決定檢測性能 —— 微反應池的容積誤差控制在 ±5%,確保反應條件一致性;納米抗體陣列的間距誤差小于 10nm,避免信號干擾,終使芯片檢測靈敏度達 fg/mL 級別,可捕獲傳統試劑盒無法識別的微量標志物。在某醫院的臨床試點中,該芯片用于肺早期篩查,對低濃度胚抗原(CEA)的檢出率比傳統方法提升 30%,充分體現了 MEMS 微納米加工在生物醫療領域的實用價值。金屬流道 PDMS 芯片與 PET 基板鍵合,實現柔性微流控芯片與剛性電路的高效集成。

聲學與振動器件對微型化、高頻率響應的需求,推動 MEMS 微納米加工技術的深度應用,深圳市勃望初芯半導體科技有限公司憑借定制化加工能力,為該領域提供創新解決方案。在聲學器件加工中,公司通過 MEMS 技術制作微型聲表面波(SAW)傳感器 —— 在壓電襯底(如 LiNbO3)上,通過光刻與鍍膜工藝制作納米級叉指電極(指寬 50-100nm、間距 50-100nm),電極通過磁控濺射沉積鋁或金金屬層,確保聲學信號的高效傳輸。這種 SAW 傳感器可用于液體成分檢測,如石油化工領域的燃油含水率分析,通過聲波在不同含水率液體中的傳播速度差異,實現精細檢測,檢測誤差小于 0.5%;在振動器件加工中,制作微型振動傳感器的懸臂梁結構(硅基梁厚 2-5μm、長度 50-100μm),通過干法刻蝕實現梁結構的高平整度(粗糙度 Ra≤5nm),確保傳感器對微小振動(小可檢測 0.1g 加速度)的高靈敏度響應。某汽車電子客戶借助勃望初芯的加工服務,開發出微型振動傳感器,用于發動機振動監測,傳感器體積比傳統器件縮小 80%,且成本降低 50%,體現了 MEMS 微納米加工在聲學與振動領域的優勢。公司開發的神經電子芯片支持無線充電與通訊,可將電信號轉化為脈沖用于神經調控替代。天津MEMS微納米加工之超透鏡定制
MEMS 微納米加工的成本效益隨著技術的成熟逐漸提高,為其大規模商業化應用奠定了基礎。什么是MEMS微納米加工方法
MEMS制作工藝柔性電子的研究發展:在近的10年間,康奈爾大學、普林斯頓大學、哈佛大學、西北大學、劍橋大學等國際有名的大學都先后建立了柔性電子技術專門研究機構,對柔性電子的材料、器件與工藝技術進行了大量研究。柔性電子技術同樣引起了我國研究人員的高度關注與重視,在柔性電子有機材料制備、有機電子器件設計與應用等方面開展了大量的基礎研究工作,并取得了一定進展。中國科學院長春應用化學研究所、中國科學院化學研究所、中國科學技術大學、華南理工大學、清華大學、西北工業大學、西安電子科技大學、天津大學、浙江大學、武漢大學、復旦大學、南京郵電大學、上海大學等單位在有機光電(高)分子材料和器件、發光與顯示、太陽能電池、場效應管、場發射、柔性電子表征和制備、平板顯示技術、半導體器件和微圖案加工等方面進行了頗有成效的研究。近年來,華中科技大學在RFID封裝和卷到卷制造、廈門大學在靜電紡絲等方面取得了研究進展。但是在產業化和定制加工方面,基于柔性PI的器件研究開發,深圳的民營科技走在前列。例如基于柔性PI襯底的太赫茲器件、柔性電生理電極、腦機接口柔性電極、電刺激/記錄電極、柔性PI超表面器件等等什么是MEMS微納米加工方法