柔性 MEMS 器件因可彎曲、生物兼容的特性,在植入式醫療、可穿戴設備中極具潛力,深圳市勃望初芯半導體科技有限公司通過定制化 MEMS 微納米加工工藝,攻克柔性材料加工難題。公司以 PI 為柔性基底,開發 “光刻 - 干法刻蝕 - 金屬化 - 封裝” 的全流程加工方案:首先通過光刻定義電極與結構圖案,采用氧等離子體干法刻蝕實現 PI 薄膜的高精度圖形化(線寬誤差 ±2μm);然后通過磁控濺射沉積金或鉑金屬層(厚度 50-100nm),制作柔性電極,確保電極在彎曲時的導電性穩定;采用生物兼容封裝材料(如 PDMS)保護結構,避免體液腐蝕。這種工藝制作的柔性 MEMS 電極,可用于植入式生物電刺激 —— 在動物實驗中,將電極植入大鼠腦內,可連續 14 天穩定記錄腦電信號,且對腦組織的損傷率低于 5%;同時,依托 PI 材料的太赫茲波透過性,加工的柔性太赫茲調制器,可貼合皮膚表面,用于皮膚的太赫茲成像檢測,通過微納米結構調控太赫茲波相位,提升成像對比度。某可穿戴設備公司借助該工藝,開發出柔性心率監測貼片,電極通過 MEMS 加工實現微型化(面積 2mm×2mm),佩戴舒適度大幅提升,體現了柔性 MEMS 加工的創新價值。自研超聲收發芯片輸出電壓達 ±100V、電流 1A,部分性能指標超越國際品牌 TI。中國香港MEMS微納米加工模型設計

聲學與振動器件對微型化、高頻率響應的需求,推動 MEMS 微納米加工技術的深度應用,深圳市勃望初芯半導體科技有限公司憑借定制化加工能力,為該領域提供創新解決方案。在聲學器件加工中,公司通過 MEMS 技術制作微型聲表面波(SAW)傳感器 —— 在壓電襯底(如 LiNbO3)上,通過光刻與鍍膜工藝制作納米級叉指電極(指寬 50-100nm、間距 50-100nm),電極通過磁控濺射沉積鋁或金金屬層,確保聲學信號的高效傳輸。這種 SAW 傳感器可用于液體成分檢測,如石油化工領域的燃油含水率分析,通過聲波在不同含水率液體中的傳播速度差異,實現精細檢測,檢測誤差小于 0.5%;在振動器件加工中,制作微型振動傳感器的懸臂梁結構(硅基梁厚 2-5μm、長度 50-100μm),通過干法刻蝕實現梁結構的高平整度(粗糙度 Ra≤5nm),確保傳感器對微小振動(小可檢測 0.1g 加速度)的高靈敏度響應。某汽車電子客戶借助勃望初芯的加工服務,開發出微型振動傳感器,用于發動機振動監測,傳感器體積比傳統器件縮小 80%,且成本降低 50%,體現了 MEMS 微納米加工在聲學與振動領域的優勢。海南MEMS微納米加工銷售電話基于 0.35/0.18μm 高壓工藝的神經電刺激 SoC 芯片,實現多通道控制與生物相容性優化。

硅基金屬電極加工工藝與生物相容性優化:在硅片、LN(鈮酸鋰)、LT(鉭酸鋰)、藍寶石、石英等基板上加工金屬電極,需兼顧電學性能與生物相容性。公司采用濺射沉積與剝離工藝,首先在基板表面沉積50-200nm的鈦/金種子層,增強金屬與基板的附著力;然后旋涂光刻膠并曝光顯影,形成電極圖案;再濺射1-5μm厚度的金/鉑金屬層,***通過**剝離得到完整電極結構。電極線條寬度可控制在10-500μm,邊緣粗糙度<5μm,接觸電阻<1Ω?cm2。針對植入式醫療器件,表面采用聚乙二醇(PEG)涂層處理,通過硅烷偶聯劑共價鍵合,涂層厚度5-10nm,可將蛋白吸附量降低90%以上,炎癥反應發生率下降60%。該技術應用于神經電極時,16通道電極陣列的信號噪聲比>20dB,可穩定記錄單個神經元放電信號達3個月以上。在傳感器領域,硅基金電極對葡萄糖的檢測靈敏度達100μA?mM?1?cm?2,線性范圍0.01-10mM,適用于血糖監測芯片。公司支持多種金屬材料(如鈦、鉑、銥)與基板的組合加工,滿足不同應用場景對電極導電性、耐腐蝕性的需求。
物聯網普及極大拓展MEMS應用場景。物聯網的產業架構可以分為四層:感知層、傳輸層、平臺層和應用層,MEMS器件是物聯網感知層重要組成部分。物聯網的發展帶動智能終端設備普及,推動MEMS需求放量,據全球移動通信系統協會GSMA統計,全球物聯網設備數量已從2010年的20億臺,增長到2019年的120億臺,未來受益于5G商用化和WiFi 6的發展,物聯網市場潛力巨大,GSMA預測,到2025年全球物聯網設備將達到246億臺,2019到2025年將保持12.7%的復合增長率。MEMS制作工藝中,以PI為特色的柔性電子出現填補了不少空白。

金屬流道PDMS芯片與PET基板的鍵合工藝:金屬流道PDMS芯片通過與帶有金屬結構的PET基板鍵合,實現柔性微流控芯片與剛性電路的集成,兼具流體處理與電信號控制功能。鍵合前,PDMS流道采用氧等離子體活化處理(功率100W,時間30秒),使表面羥基化;PET基板通過電暈處理提升表面能,濺射1μm厚度的銅層并蝕刻形成電極圖案。鍵合過程在真空環境下進行,施加0.5MPa壓力并保持30分鐘,形成化學共價鍵,剝離強度>5N/cm。金屬流道內的電解液與外部電路通過鍵合區的Pad連接,接觸電阻<100mΩ,確保信號穩定傳輸。該技術應用于微流控電化學檢測芯片時,可在10μL的反應體系內實現多參數同步檢測,如pH、離子濃度與氧化還原電位,檢測精度均優于±1%。公司優化了鍵合設備的溫度與壓力控制算法,將鍵合缺陷率(如氣泡、邊緣溢膠)降至0.5%以下,支持大規模量產。此外,PET基板的可裁剪性與低成本特性,使得該芯片適用于一次性檢測試劑盒,單芯片成本較玻璃/硅基方案降低60%,為POCT設備廠商提供了高性價比的集成方案。可降解聚合物加工工藝儲備,為體內短期植入檢測芯片提供生物相容性材料解決方案。采用微納米加工的MEMS微納米加工的技術服務
隨著科技的不斷進步,MEMS 微納米加工的精度正在持續提高,趨近于原子級別的操控。中國香港MEMS微納米加工模型設計
高壓SOI工藝在MEMS芯片中的應用創新:高壓SOI(絕緣體上硅)工藝是制備高耐壓、低功耗MEMS芯片的**技術,公司在μm節點實現了發射與開關電路的集成創新。通過SOI襯底的埋氧層(厚度1μm)隔離高壓器件與低壓控制電路,耐壓能力達200V以上,漏電流<1nA,適用于神經電刺激、超聲驅動等高壓場景。在神經電子芯片中,高壓SOI工藝實現了128通道**驅動,每通道輸出脈沖寬度1-1000μs可調,幅度0-100V可控,脈沖邊沿抖動<5ns,確保精細的神經信號調制。與傳統體硅工藝相比,SOI芯片的寄生電容降低40%,功耗節省30%,芯片面積縮小50%。公司優化了SOI晶圓的鍵合與減薄工藝,將襯底厚度控制在100μm以下,支持芯片的柔性化封裝。該技術突破了高壓器件與低壓電路的集成瓶頸,推動MEMS芯片向高集成度、高可靠性方向發展,在植入式醫療設備、工業控制傳感器等領域具有廣闊應用前景。 中國香港MEMS微納米加工模型設計