微流控芯片的硅質材料加工工藝:是在硅材料的加工中,光刻(lithography)和濕法刻蝕(wetetching)技術是2種常規工藝。由于硅材料具有良好的光潔度和很成熟的加工工藝,主要用于加工微泵、微閥等液流驅動和控制器件,或者在熱壓法和模塑法中作為高分子聚合物材料加工的陽模。光刻是用光膠、掩模和紫外光進行微制造。光刻和濕法蝕刻技術通常由薄膜沉淀、光刻、刻蝕3個工序組成。在薄膜表面用甩膠機均勻地附上一層光膠。然后將掩模上的圖像轉移到光膠層上,此步驟首先在基片上覆蓋一層薄膜,為光刻。再將光刻上的圖像,轉移到薄膜,并在基片上加工一定深度的微結構,此步驟完成了蝕刻。克服微流控芯片所遇到的難題。上海微流控芯片的制作

安捷倫已有一些儀器使用趨向于具有更多可用性方面的經驗,并將這些經驗應用到了微流體技術開發上。微流體和生物傳感器的項目經理Kevin Killeen博士在接受采訪時說,安捷倫的目標是為終端使用者解除負擔,“由適宜的儀器產品組裝成的系統可以讓非專業人士操縱專業設備”。微流體技術也需要適時表現出其自身的實用性和可靠性,例如,納米級電噴霧質譜分析(nano-electrospray MS)不必考慮其頂端的閉合及邊帶的加寬,Killeen補充道:“對于生物學家來說,微流控技術的價值就在于此。”西藏微流控芯片特征從設計到硬質塑料芯片成型的快速工藝,大幅縮短研發周期與試產成本。

在過去的30年中,微流控芯片已經成為cancer therapy領域診斷和cure的重要工具。可以在微流控芯片上進行各種類型的細胞和組織培養,包括2D細胞培養、3D細胞培養和組織類apparatus培養。患者來源的cancer和組織以可見、可控和高通量的方式在微流控芯片上培養,這推進了個性化醫療的過程。此外,由于可定制的性質,微流控芯片的功能正在擴展。此外,已經發現它是較為方便快捷的,因為它能夠處理少量樣品,例如來自患者活組織檢查的細胞,提供高水平的自動化,并允許建立用于cancer研究的復雜模型。在開發用于cure診斷用途的微流控芯片方面做出了各種努力。
高聚物材料加工工藝:是以高聚物材料為基片加工微流控芯片的方法主要有:模塑法、熱壓法、LIGA技術、激光刻蝕法和軟光刻等。模塑法是先利用半導體/MEMS光刻和蝕刻的方法制作出通道部分突起的陽模,然后在陽模上澆注液體的高分子材料,將固化后的高分子材料與陽模剝離后就得到了具有微結構的基片,之后與蓋片(多為玻璃)封接后就制得高聚物微流控芯片。這一方法簡單易行,不需要高技術設備,是大量生產廉價芯片的方法。熱壓法也需要事先獲得適當的陽模。可定制加工小批量 PDMS、硬質塑料、玻璃、硅片等材質的微流控芯片。

安捷倫在微流控技術平臺上的三個主要產品是Agilent 2100、 Bioanalyzer/5100、 Automated Lab-on-a-Chip (后有斯坦福大學Stephen Quake研究小組開發的微流體控制因素大規模地綜合應用和瑞士Spinx Technologies開發的激光控制閥門。澳大利亞墨爾本蒙納士大學的研究者正在開發可在微通道內吸取、混合和濃縮分析樣品的等離子體偏振方法。等離子體不接觸工作流體便可產生“推力”,具有維持流體穩定流動,對電解質溶液不敏感也不受其污染的優點。瑞士蘇黎士聯邦工業大學的David Juncker認為,流體的驅動沒有必要采用這類高新技術,利用簡單的毛細管效應就可以驅動流體通過微通道。完善 PDMS 芯片產線覆蓋來料加工、生產、質檢,支持高標準批量交付。湖南微流控芯片
多樣化微流控芯片加工案例覆蓋數字 PCR、單分子檢測、POCT 等多個領域。上海微流控芯片的制作
微流控芯片的未來發展與公司技術儲備:面對微流控技術向集成化、智能化發展的趨勢,公司持續投入三維多層流道加工、芯片與微納傳感器/執行器的異質集成,以及生物相容性材料創新。在技術儲備方面,已突破10μm以下尺度的納米流道加工(結合電子束光刻與納米壓印),為單分子DNA測序芯片奠定基礎;開發了基于形狀記憶合金的微閥驅動技術,實現芯片內流體的主動控制;儲備了可降解聚合物(如聚乳酸-羥基乙酸共聚物,PLGA)微流控芯片工藝,適用于體內植入式檢測設備。未來,公司將聚焦“芯片實驗室”全集成解決方案,推動微流控技術在個性化醫療、環境監測、食品安全等領域的深度應用,通過持續創新保持在微納加工與生物傳感芯片領域的技術地位。上海微流控芯片的制作