在重癥炎癥(如膿毒癥)、CAR-T診療或某些自身免疫病中,細胞因子風暴是危及生命的狀態,需要快速監測多種炎癥因子。基于微球陣列的均相化學發光多重檢測技術,能夠從單份微量血清或血漿樣本中,同時定量檢測IL-6、IL-1β、TNF-α、IFN-γ等十幾種關鍵細胞因子的濃度。這種高通量、多參數的分析能力,使得臨床醫生或研究人員能夠多方面、快速地掌握患者的炎癥風暴譜系,評估嚴重程度,并監測診療干預(如抗細胞因子抗體)的效果,為精細免疫調控提供依據。均相化學發光技術的原理是什么,如何實現檢測?北京干式化學發光均相發光解決方案

研究蛋白質-蛋白質、蛋白質-核酸等生物分子間的相互作用,對于理解生命過程至關重要。均相化學發光技術,特別是Alpha技術,為PPI研究提供了強大的定量平臺。通過將相互作用的雙方分別與供體珠和受體珠偶聯,可以直接在溶液生理條件下測量結合信號。該方法不僅可以驗證互作,還能通過競爭實驗測定小分子抑制劑的IC50,或通過滴定實驗估算結合常數(KD)。相較于傳統的表面等離子共振(SPR)或等溫滴定量熱法(ITC),均相化學發光方法通量更高,樣品消耗更少,更適合于大規模篩選和初步的相互作用表征。北京干式化學發光均相發光解決方案告別磁珠反應,均相化學發光,操作更簡便,實驗效率大幅提升!

在藥物安全性評價早期,評估化合物的遺傳毒性至關重要。傳統的細菌回復突變試驗(Ames試驗)周期較長。一些基于哺乳動物細胞的均相化學發光遺傳毒性篩選方法被開發出來。例如,使用工程細胞系,其中DNA損傷響應元件(如p53響應元件)調控著熒光素酶報告基因的表達。當化合物引起DNA損傷時,會活化報告基因,產生化學發光信號。這類方法能在幾天內完成對大量化合物的初步遺傳毒性風險評估,作為Ames試驗的高通量預篩選工具,有助于早期淘汰有風險的候選分子,節約研發成本。
化學發光共振能量轉移(CRET)是另一種重要的均相信號產生機制。它本質上是一種無需外部光激發的內源性FRET。在CRET中,供體是化學發光反應產生的激發態分子(如氧化的魯米諾或吖啶酯),其發射的光子能量直接傳遞給鄰近的熒光受體(如熒光染料、量子點或納米材料),促使受體發射出波長紅移的熒光。在均相檢測設計中,可將化學發光分子與受體分別標記在相互作用的生物分子對上。只有當目標分子存在并促使兩者結合時,供體與受體才能充分靠近,發生有效的CRET,產生特征性的受體熒光信號。通過檢測受體熒光,可以避免直接化學發光可能存在的背景干擾,并獲得更佳的光譜分辨能力,利于多重檢測。均相化學發光技術在臨床檢驗中的普及程度。

在傳染病診斷領域,均相化學發光技術主要用于開發高靈敏的抗原或抗體檢測方法。例如,針對病毒抗原,可以設計雙抗體夾心法的Alpha檢測,實現快速、高靈敏的定量。在病毒學基礎研究中,其應用更為普遍:假病毒中和試驗(檢測熒光素酶報告基因信號以評估抗體中和能力)、病毒進入抑制篩選、病毒復制周期關鍵酶(如蛋白酶、聚合酶)抑制劑篩選等。特別是在COVID-19大流行期間,基于均相化學發光原理的高通量中和抗體檢測平臺,為疫苗評價和康復者血漿篩查提供了關鍵工具。25-羥基維生素D(25 OH-VD)檢測試劑盒(均相化學發光法)。北京干式化學發光均相發光解決方案
均相化學發光技術的未來發展趨勢是什么?北京干式化學發光均相發光解決方案
盡管優勢明顯,均相發光技術也存在一些挑戰和局限性。首先,某些技術(如FRET)可能受到樣本自身顏色(如血紅蛋白)、濁度或某些化合物(如具有強熒光或淬滅特性的藥物)的光學干擾。其次,均相檢測通常對試劑的特異性和純度要求極高,任何非特異性結合或聚集都可能導致假陽性信號。第三,開發均相檢測方法需要進行復雜的探針設計和標記優化,前期開發成本較高。比較后,對于某些極低豐度的靶標,其靈敏度有時可能仍低于經過多步洗滌和信號放大的異相方法(如化學發光免疫分析CLIA)。北京干式化學發光均相發光解決方案