在工業(yè)互聯(lián)網(wǎng)、智能交通、智慧醫(yī)療等場景中,數(shù)據(jù)處理的實(shí)時(shí)性正成為決定行業(yè)競爭力的重要指標(biāo)。傳統(tǒng)云計(jì)算模式下,數(shù)據(jù)需經(jīng)長距離傳輸至云端處理,端到端延遲普遍超過100毫秒,難以滿足高精度控制需求。而5G網(wǎng)絡(luò)與邊緣計(jì)算的深度融合,正以“高帶寬+低時(shí)延”的雙重特性,重構(gòu)數(shù)據(jù)處理范式。作為國家高新企業(yè),深圳市倍聯(lián)德實(shí)業(yè)有限公司憑借其在邊緣計(jì)算領(lǐng)域的深厚積累,率先推出多款5G邊緣計(jì)算解決方案,為智能制造、智慧城市等領(lǐng)域提供“超實(shí)時(shí)”智能支撐。自動(dòng)駕駛車輛依賴邊緣計(jì)算實(shí)現(xiàn)本地化路徑規(guī)劃和障礙物識(shí)別,確保行車安全。廣東主流邊緣計(jì)算架構(gòu)

隨著AI大模型向邊緣端遷移,倍聯(lián)德正布局兩大方向:邊緣大模型:研發(fā)千億參數(shù)模型的輕量化版本,支持在邊緣設(shè)備上運(yùn)行多模態(tài)推理任務(wù)。6G-邊緣融合:與華為合作研發(fā)太赫茲通信模塊,結(jié)合TSN時(shí)間敏感網(wǎng)絡(luò),為L5級(jí)自動(dòng)駕駛提供10Gbps級(jí)實(shí)時(shí)數(shù)據(jù)傳輸能力。“邊緣計(jì)算不是云端的替代者,而是AI能力的延伸。”倍聯(lián)德CTO李明表示,“通過精確的分工策略,我們正在讓每一輛自動(dòng)駕駛汽車、每一臺(tái)工業(yè)機(jī)器人都擁有一個(gè)‘本地化超級(jí)大腦’。”在這場智能變革中,邊緣計(jì)算與AI的深度融合,正重新定義技術(shù)與產(chǎn)業(yè)的邊界。廣東無風(fēng)扇系統(tǒng)邊緣計(jì)算算法零售業(yè)利用邊緣計(jì)算分析店內(nèi)客流和商品陳列,動(dòng)態(tài)調(diào)整營銷策略以提升轉(zhuǎn)化率。

針對(duì)工業(yè)質(zhì)檢場景中缺陷樣本稀缺的問題,倍聯(lián)德開發(fā)了基于ResNet-50的遷移學(xué)習(xí)框架。以某汽車零部件廠商為例,其生產(chǎn)線需檢測(cè)0.1毫米級(jí)的表面裂紋,但歷史缺陷數(shù)據(jù)不足千張。通過在云端預(yù)訓(xùn)練通用視覺模型,再遷移至邊緣設(shè)備進(jìn)行微調(diào),模型收斂時(shí)間從72小時(shí)縮短至8小時(shí),檢測(cè)速度達(dá)每秒30幀,誤檢率低于0.5%。倍聯(lián)德的云端平臺(tái)支持模型版本迭代,通過接收邊緣設(shè)備上傳的增量數(shù)據(jù),實(shí)現(xiàn)全局模型的持續(xù)優(yōu)化。在智慧交通場景中,某城市部署的2000個(gè)邊緣節(jié)點(diǎn)每日產(chǎn)生TB級(jí)路況數(shù)據(jù),云端模型每周更新一次,使信號(hào)燈配時(shí)優(yōu)化效率提升40%,高峰時(shí)段擁堵指數(shù)下降25%。
倍聯(lián)德技術(shù)已深度融入自動(dòng)駕駛?cè)湕l:車路協(xié)同:在無錫國家的車聯(lián)網(wǎng)先導(dǎo)區(qū),倍聯(lián)德部署的路側(cè)邊緣計(jì)算節(jié)點(diǎn)可實(shí)時(shí)處理1平方公里范圍內(nèi)所有車輛的數(shù)據(jù),將信號(hào)燈配時(shí)優(yōu)化效率提升40%,路口通行能力提高25%。礦區(qū)自動(dòng)駕駛:為內(nèi)蒙古某煤礦設(shè)計(jì)的防爆型邊緣計(jì)算設(shè)備,可在-40℃至60℃極端環(huán)境下穩(wěn)定運(yùn)行,支持5G+TSN確定性網(wǎng)絡(luò),使無人礦卡調(diào)度延遲從秒級(jí)降至毫秒級(jí),年運(yùn)輸效率提升30%。Robotaxi運(yùn)營:與某頭部出行平臺(tái)合作的項(xiàng)目中,倍聯(lián)德邊緣計(jì)算平臺(tái)實(shí)現(xiàn)遠(yuǎn)程監(jiān)控與本地決策的協(xié)同,使單車日均接單量從12單提升至18單,乘客等待時(shí)間縮短35%。邊緣緩存技術(shù)通過預(yù)測(cè)用戶行為提前存儲(chǔ)熱門內(nèi)容,減少重復(fù)數(shù)據(jù)傳輸。

隨著6G、AI大模型與邊緣計(jì)算的深度融合,倍聯(lián)德正布局兩大前沿方向:邊緣大模型:將參數(shù)量達(dá)6710億的醫(yī)療大模型壓縮至邊緣設(shè)備可運(yùn)行范圍,支持基層醫(yī)院在本地完成從術(shù)前規(guī)劃到術(shù)中決策的全流程AI輔助;數(shù)字孿生工廠:通過邊緣計(jì)算實(shí)時(shí)映射生產(chǎn)線數(shù)據(jù),結(jié)合數(shù)字孿生技術(shù)實(shí)現(xiàn)產(chǎn)能預(yù)測(cè)、能耗優(yōu)化等智能決策,使工廠運(yùn)營成本降低25%。“邊緣計(jì)算不是對(duì)云計(jì)算的替代,而是智能世界的‘神經(jīng)末梢’。”倍聯(lián)德CEO王偉表示。目前,該公司已擁有80余項(xiàng)知識(shí)產(chǎn)權(quán),其邊緣計(jì)算產(chǎn)品已成功應(yīng)用于礦山、分布式邊緣資源的調(diào)度算法需平衡負(fù)載、能耗和時(shí)延,避免局部過載或閑置。廣東無風(fēng)扇系統(tǒng)邊緣計(jì)算算法
金融行業(yè)利用邊緣計(jì)算分析交易數(shù)據(jù),實(shí)現(xiàn)高頻交易的風(fēng)控和反欺騙檢測(cè)。廣東主流邊緣計(jì)算架構(gòu)
據(jù)IDC預(yù)測(cè),到2026年,全球自動(dòng)駕駛邊緣計(jì)算市場規(guī)模將突破200億美元,年復(fù)合增長率超60%。倍聯(lián)德正加速布局三大方向:邊緣大模型:將千億參數(shù)模型壓縮至邊緣設(shè)備可運(yùn)行范圍,實(shí)現(xiàn)本地化語義分割與決策推理。6G-邊緣融合:與華為合作研發(fā)太赫茲通信模塊,支持10Gbps級(jí)實(shí)時(shí)數(shù)據(jù)傳輸,為L5級(jí)自動(dòng)駕駛提供技術(shù)儲(chǔ)備。數(shù)字孿生:構(gòu)建包含10萬+交通節(jié)點(diǎn)的虛擬仿真平臺(tái),通過邊緣計(jì)算實(shí)現(xiàn)虛實(shí)交互,使算法訓(xùn)練效率提升10倍。在自動(dòng)駕駛從“輔助駕駛”向“完全無人”跨越的關(guān)鍵階段,邊緣計(jì)算正從“可選配件”升級(jí)為“重要基礎(chǔ)設(shè)施”。倍聯(lián)德通過持續(xù)的技術(shù)創(chuàng)新與場景深耕,不但為行業(yè)提供了可復(fù)制的解決方案,更推動(dòng)中國自動(dòng)駕駛產(chǎn)業(yè)在全球競爭中占據(jù)先機(jī)。正如公司CTO所言:“我們的目標(biāo),是讓每一輛自動(dòng)駕駛汽車都擁有一個(gè)‘本地化超級(jí)大腦’。”廣東主流邊緣計(jì)算架構(gòu)