UPS電源即不間斷電源,用于在電網停電時為負載提供臨時供電,其內部的變壓器、電感等部件都離不開鐵芯。UPS電源用鐵芯需要具備高可靠性、低損耗、良好的動態響應性能,能夠在電網電壓波動或停電時速度切換,穩定供電。UPS電源中的變壓器用于電壓轉換和隔離,通常采用冷軋硅鋼片或非晶合金鐵芯,冷軋硅鋼片的性價比高,適用于普通UPS電源;非晶合金鐵芯的損耗低,適用于節能型UPS電源。變壓器鐵芯的結構多為芯式或殼式,根據UPS電源的功率和尺寸要求選擇。UPS電源中的電感用于濾波和儲能,通常采用鐵氧體或粉末冶金鐵芯,鐵氧體鐵芯適用于高頻濾波,粉末冶金鐵芯適用于儲能和大電流場景。UPS電源用鐵芯的動態響應性能要求較高,需要在電網電壓突變或負載變化時速度調整磁性能,確保輸出電壓穩定。因此,鐵芯的材質選擇和結構設計需要考慮動態特性,如采用低矯頑力的材質,減少磁化和退磁時間。UPS電源的工作環境多樣,部分會在高溫、潮濕環境下使用,因此鐵芯需要具備良好的抗腐蝕和耐高溫性能,表面處理采用耐高溫、耐腐蝕的涂層。 鐵芯的損耗曲線可通過實驗繪制;銀川環型鐵芯
鐵芯的切割加工方法會影響其邊緣的磁性能。機械沖裁會在切割邊緣產生塑性變形區和殘余應力,導致該區域的磁導率下降,損耗增加。激光切割和線切割等非傳統加工方式的熱影響區較小,對邊緣磁性能的損害相對較輕,但成本較高。選擇合適的加工方式,需要在性能和成本之間權衡。鐵芯的磁性能測量需要在標準化的條件下進行,以保證數據的可比能青潑斯坦方圈法是測量硅鋼片鐵損和磁感的國際標準方法之一,它使用特定尺寸和重量的條狀試樣組成一個正方形磁路。環形試樣的測量則能避免切割應力的影響,更反映材料的本征性能,但制樣較復雜。鐵芯的切割加工方法會影響其邊緣的磁性能。機械沖裁會在切割邊緣產生塑性變形區和殘余應力,導致該區域的磁導率下降,損耗增加。激光切割和線切割等非傳統加工方式的熱影響區較小,對邊緣磁性能的損害相對較輕,但成本較高。選擇合適的加工方式,需要在性能和成本之間權衡。鐵芯的磁性能測量需要在標準化的條件下進行,以保證數據的可比能青潑斯坦方圈法是測量硅鋼片鐵損和磁感的國際標準方法之一,它使用特定尺寸和重量的條狀試樣組成一個正方形磁路。環形試樣的測量則能避免切割應力的影響,更反映材料的本征性能,但制樣較復雜。 大興安嶺電抗器鐵芯定制鐵芯的邊角處理可減少渦流;

鐵芯的重復磁化過程伴隨著能量的不斷消耗,這部分能量此終轉化為熱能。磁滯回線的面積直接替代了單位體積鐵芯在一個磁化周期內所消耗的能量。選擇磁滯回線狹窄、面積小的軟磁材料,是降低鐵芯磁滯損耗的根本途徑。材料的矯頑力是影響磁滯回線寬度的關鍵參數。鐵芯在電力系統諧波環境下面臨著更嚴峻的考驗。諧波電流會產生高頻磁場,導致鐵芯中的渦流損耗和磁滯損耗增加,并且由于集膚效應,損耗的增加可能比頻率上升的比例更快。這會導致鐵芯局部過熱和整體溫升加大。對于運行在諧波含量較高環境下的變壓器和電機,其鐵芯需要采用更適合高頻工作的材料或設計。鐵芯的重復磁化過程伴隨著能量的不斷消耗,這部分能量此終轉化為熱能。磁滯回線的面積直接替代了單位體積鐵芯在一個磁化周期內所消耗的能量。選擇磁滯回線狹窄、面積小的軟磁材料,是降低鐵芯磁滯損耗的根本途徑。材料的矯頑力是影響磁滯回線寬度的關鍵參數。鐵芯在電力系統諧波環境下面臨著更嚴峻的考驗。諧波電流會產生高頻磁場,導致鐵芯中的渦流損耗和磁滯損耗增加,并且由于集膚效應,損耗的增加可能比頻率上升的比例更快。這會導致鐵芯局部過熱和整體溫升加大。對于運行在諧波含量較高環境下的變壓器和電機。
鐵氧體鐵芯是由氧化鐵與錳、鋅、鎳等金屬氧化物通過混合、成型、燒結等工藝制成的非金屬鐵芯,其此明顯的特點是具有良好的溫度適配能力。鐵氧體材質的居里溫度較高,在一定溫度范圍內(通常為-40℃至150℃),其磁性能能夠保持穩定,不會因溫度變化出現大幅波動,這使得它能夠適應不同的工作環境,無論是高溫的工業車間還是低溫的戶外設備,都能正常發揮作用。此外,鐵氧體鐵芯的高頻損耗較低,在高頻磁場作用下,渦流損耗和磁滯損耗都處于較低水平,因此特別適用于高頻電磁設備,例如開關電源、高頻變壓器、射頻電感等。鐵氧體鐵芯的硬度較高,耐磨性和耐腐蝕性強,使用壽命較長,且加工工藝相對簡單,能夠制成各種復雜的形狀,滿足不同設備的結構需求。從應用范圍來看,鐵氧體鐵芯普遍分布于電子通信、家用電器、新能源汽車、醫療器械等領域,例如手機充電器中的小型變壓器、空調壓縮機中的電機、新能源汽車充電樁中的電感組件等,都離不開鐵氧體鐵芯的支持,其穩定的溫度特性和高頻性能為設備的可靠運行提供了重要保障。 工頻電源下的鐵芯損耗有特定規律;

鐵芯的磁導率是一個隨磁場強度和頻率變化的量。初始磁導率、最大磁導率和振幅磁導率分別描述了不同磁化狀態下的導磁能力。在工程設計中,需要根據鐵芯實際工作的磁通密度和頻率范圍,來選擇具有相應磁導率特性的材料,以確保電磁元件在設計點附近具有良好的性能表現。鐵芯在電流互感器中用于將一次側的大電流按比例變換為二次側的小電流,以供測量和保護之用。對電流互感器鐵芯的要求是在正常工作范圍內具有較高的磁導率以保證變換精度,而在系統故障出現大電流時,鐵芯應能較快飽和,以保護二次側的儀表和繼電器不受損壞。 鐵芯的連接方式影響導電性能;阿拉善坡莫合晶鐵芯
鐵芯的退火處理能改善其內部應力;銀川環型鐵芯
在電磁繼電器中,鐵芯扮演著動力源的角色。當線圈通電時,鐵芯被磁化,產生足夠的電磁吸力,驅動銜鐵動作,從而帶動觸點接通或分斷電路。鐵芯的導磁性能和截面積大小,直接關系到繼電器能夠產生的吸力大小和動作的響應速度。一個設計得當的鐵芯,能夠確保繼電器在規定的電壓范圍內穩定可靠地吸合與釋放。鐵芯的退火處理是一道重要的熱處理工序。在冷軋加工后,硅鋼片內部會存在晶格畸變和殘余應力,這會影響其磁學性能。通過把控退火溫度、時間和氣氛,可以使硅鋼片的晶粒發生再結晶和長大,去除內應力,從而改善其磁導率,降低磁滯損耗。退火工藝的把控,是獲得具有良好軟磁性能鐵芯材料的關鍵步驟之一。 銀川環型鐵芯