作為行業先行者,倍聯德構建了覆蓋硬件、算法、系統的全棧解決方案:異構計算架構:其E500系列邊緣服務器采用Intel?Xeon?D系列處理器與NVIDIA Jetson AGX Orin GPU的混合架構,支持16路4K視頻實時分析,算力密度較傳統方案提升3倍。在蘇州工業園區自動駕駛測試場,該設備可同時處理200路攝像頭數據,目標檢測準確率達99.2%。聯邦學習框架:針對數據隱私保護需求,倍聯德開發了分布式聯邦學習平臺。在廣州智能網聯汽車示范區,100輛測試車通過邊緣節點共享模型參數,在保護原始數據的前提下,將雨霧天氣下的行人識別準確率從78%提升至92%。動態資源調度:基于強化學習的資源分配...
倍聯德技術已深度融入自動駕駛全鏈條:車路協同:在無錫國家的車聯網先導區,倍聯德部署的路側邊緣計算節點可實時處理1平方公里范圍內所有車輛的數據,將信號燈配時優化效率提升40%,路口通行能力提高25%。礦區自動駕駛:為內蒙古某煤礦設計的防爆型邊緣計算設備,可在-40℃至60℃極端環境下穩定運行,支持5G+TSN確定性網絡,使無人礦卡調度延遲從秒級降至毫秒級,年運輸效率提升30%。Robotaxi運營:與某頭部出行平臺合作的項目中,倍聯德邊緣計算平臺實現遠程監控與本地決策的協同,使單車日均接單量從12單提升至18單,乘客等待時間縮短35%。動態資源分配算法根據任務優先級和節點負載,實時調整邊緣計算資...
邊緣計算將數據處理下沉至設備端,導致敏感數據(如工業控制指令、用戶健康信息)在邊緣節點集中存儲。某汽車零部件廠商的案例顯示,其邊緣質檢系統因未采用端到端加密,導致30萬條產品缺陷數據被竊取,直接經濟損失超2000萬元。更嚴峻的是,邊緣節點與云端的數據同步過程易遭中間人攻擊,某風電企業曾因通信協議漏洞,導致風機振動數據在傳輸中被篡改,引發非計劃停機。邊緣節點硬件異構性強,從工業PLC到智能攝像頭,不同設備的安全防護能力參差不齊。某化工企業的邊緣安全監控系統因使用未修復漏洞的舊版操作系統,被植入惡意軟件后持續竊取有毒氣體泄漏數據,險些釀成重大事故。此外,邊緣計算平臺常采用虛擬化技術,若宿主系統存在...
倍聯德突破傳統MEC廠商“設備+平臺”的單一模式,聚焦垂直行業的重要痛點,打造“硬件+算法+服務”的全棧解決方案。例如,在智能制造領域,其E500系列機架式邊緣服務器已部署于比亞迪、富士康等企業的智能工廠,通過集成AI視覺質檢、設備預測性維護等功能,將生產線缺陷檢測準確率提升至99.2%,同時降低30%的運維成本。“傳統MEC方案只提供基礎算力,而倍聯德將行業知識圖譜嵌入邊緣設備。”倍聯德CTO李明表示。以汽車制造為例,其邊緣節點內置的“焊接缺陷知識庫”可實時分析2000余種工藝參數,在0.1秒內識別氣孔、裂紋等缺陷,較云端模式響應速度提升20倍。邊緣計算框架通常融合了物聯網、AI和5G技術,...
在5G網絡與人工智能技術的雙重驅動下,邊緣計算正從概念驗證走向規模化商用,成為推動工業互聯網、智慧城市、智能醫療等領域變革的重要引擎。據IDC預測,到2026年,全球邊緣計算市場規模將突破1200億美元,其中中國市場的年復合增長率將超過35%。作為國家高新企業,深圳市倍聯德實業有限公司憑借其在邊緣計算設備研發、場景化解決方案及生態協同領域的創新突破,正重新定義邊緣計算的技術邊界與商業價值。傳統云計算架構下,數據需上傳至云端處理,導致工業控制、自動駕駛等場景面臨200毫秒以上的延遲,難以滿足實時性要求。倍聯德通過“異構計算+本地化AI”技術,將關鍵任務處理能力下沉至邊緣節點,實現毫秒級響應。邊緣...
倍聯德EdgeAI平臺引入其聯邦學習與強化學習技術:任務分級處理:將緊急控制指令(如機械臂急停)分配至本地邊緣節點,延遲<5毫秒;將非實時任務(如生產數據統計)上傳至云端,降低本地算力壓力。模型壓縮優化:通過知識蒸餾技術,將工業質檢AI模型體積縮小90%,可在邊緣節點直接運行,減少90%的數據回傳量。預測性運維:基于設備歷史數據訓練故障預測模型,提前15天預警潛在故障,使運維成本降低35%。在深圳某港口,倍聯德方案使無人集卡調度延遲從秒級降至毫秒級,年運輸效率提升30%。邊緣計算為無人機的自主飛行提供了強大的計算能力。廣東高性能邊緣計算報價云計算憑借彈性擴展能力與海量存儲資源,成為需要深度分析...
邊緣計算資源有限,攻擊者利用僵尸網絡發起低頻高并發攻擊,可輕易耗盡邊緣節點算力。2024年某智能電網試點項目中,攻擊者通過偽造海量電力負荷數據請求,導致區域邊緣控制中心癱瘓2小時,影響10萬戶供電。更隱蔽的攻擊方式是針對邊緣AI模型的“數據投毒”,通過篡改訓練數據使模型誤判,某自動駕駛測試場曾因此發生碰撞事故。邊緣設備部署環境復雜,從工廠車間到野外基站,物理防護措施薄弱。某油田的邊緣數據采集終端因未安裝防拆報警裝置,被不法分子直接拔除硬盤,導致地質勘探數據長久丟失。供應鏈環節同樣存在風險,某邊緣服務器廠商因使用被篡改的固件,導致交付的200臺設備均預置后門。在應急救援場景中,邊緣計算支持斷網環...
邊緣計算將數據處理下沉至設備端,導致敏感數據(如工業控制指令、用戶健康信息)在邊緣節點集中存儲。某汽車零部件廠商的案例顯示,其邊緣質檢系統因未采用端到端加密,導致30萬條產品缺陷數據被竊取,直接經濟損失超2000萬元。更嚴峻的是,邊緣節點與云端的數據同步過程易遭中間人攻擊,某風電企業曾因通信協議漏洞,導致風機振動數據在傳輸中被篡改,引發非計劃停機。邊緣節點硬件異構性強,從工業PLC到智能攝像頭,不同設備的安全防護能力參差不齊。某化工企業的邊緣安全監控系統因使用未修復漏洞的舊版操作系統,被植入惡意軟件后持續竊取有毒氣體泄漏數據,險些釀成重大事故。此外,邊緣計算平臺常采用虛擬化技術,若宿主系統存在...
5G網絡空口時延可低至1毫秒,結合邊緣計算的本地化部署,端到端延遲可壓縮至10毫秒以內。這一特性在工業場景中價值明顯:倍聯德為某汽車零部件廠商部署的5G邊緣質檢系統中,振動傳感器數據在邊緣節點完成實時分析,故障預警延遲從傳統模式的2.3秒降至0.15秒,設備非計劃停機時間減少65%。在自動駕駛領域,倍聯德與車企合作的5G無人公交項目,通過邊緣計算節點實時處理路側攝像頭數據,結合5G低時延特性,使車輛緊急制動距離縮短40%,安全性提升3倍。5G網絡峰值速率達10Gbps,可支持每平方公里百萬級設備連接。這一特性解決了邊緣計算的數據傳輸瓶頸:在某光伏電站項目中,倍聯德部署的5G邊緣控制器通過本地化...
在自動駕駛、工業控制等場景,性能不足的代價可能是災難性的。例如:自動駕駛:車輛需在10毫秒內完成路況感知與決策,云端處理延遲達200毫秒以上,根本無法滿足需求。工業質檢:某電子廠采用云端AI質檢時,因網絡延遲導致缺陷產品漏檢率高達15%,改用邊緣計算后漏檢率降至0.3%。智慧醫療:遠程手術中,100毫秒的延遲就可能造成手術器械操作偏差,邊緣計算將延遲壓縮至10毫秒以內,保障了手術精度。“性能是邊緣計算的立身之本,但成本控制決定其能否規模化落地。”倍聯德CTO李明指出。倍聯德方案:四維驅動成本與性能的黃金平衡作為邊緣計算領域的先進企業,倍聯德通過技術創新與生態協同,構建了“硬件優化、軟件智能、網...
當前,云廠商正加速布局邊緣服務:AWS Wavelength將計算資源嵌入5G基站,Azure Edge Zones實現數據中心與邊緣節點的無縫對接,華為FusionEdge平臺支持邊云應用統一開發。隨著AI大模型向邊緣端遷移,未來三年,邊緣設備的推理能力將提升10倍,而云端將聚焦于千億參數模型的訓練與優化。在這場計算范式的變革中,邊緣計算與云計算如同數字世界的“左右腦”——前者以毫秒級響應守護生命安全與生產效率,后者以海量算力探索宇宙奧秘與人類未來。兩者的深度融合,正推動各行各業邁向“實時智能”的新紀元。邊緣計算有助于減少數據中心的流量負載。廣東超市邊緣計算視頻分析在智能制造領域,其E500...
在人工智能(AI)技術向千行百業滲透的浪潮中,邊緣計算正從“配角”躍升為“重要引擎”。據IDC預測,到2026年,全球邊緣計算市場規模將突破1200億美元,其中與AI的深度融合占比將超過60%。這一趨勢背后,是行業對“低延遲、高隱私、低成本”的迫切需求。作為國家高新企業,深圳市倍聯德實業有限公司憑借其在邊緣計算與AI領域的創新實踐,率先構建了一套“云端訓練+邊緣推理”的分工策略,為智能制造、智慧醫療、自動駕駛等領域提供了可復制的解決方案。邊緣計算的容器化部署可提升資源利用率,并支持跨平臺快速遷移和擴展。邊緣計算盒子邊緣推理的重要價值在于將AI能力下沉至數據源頭,解決云端模式的延遲痛點。倍聯德通...
邊緣推理的重要價值在于將AI能力下沉至數據源頭,解決云端模式的延遲痛點。倍聯德通過“模型輕量化+異構計算”技術,使邊緣設備具備單獨決策能力:針對工業機器人控制場景,倍聯德采用“剪枝+量化+知識蒸餾”三重壓縮技術,將YOLOv5目標檢測模型體積從140MB壓縮至3.2MB,推理速度提升12倍。在某電子廠的實際應用中,邊緣設備可實時識別機械臂運動軌跡偏差,響應延遲從200毫秒降至15毫秒,故障停機時間減少65%。倍聯德E500系列邊緣服務器集成Intel Xeon D處理器與NVIDIA Jetson AGX Orin GPU,支持動態任務分配。在自動駕駛測試中,該設備將激光雷達點云處理任務分配給...
倍聯德為富士康打造的“5G+邊緣計算”智能工廠,實現三大突破:實時控制:邊緣節點直接控制機械臂運動,將運動指令響應時間從200毫秒壓縮至20毫秒;柔性生產:通過邊緣計算分析訂單數據,動態調整產線配置,支持小批量、多品種的快速切換;預測性維護:結合設備振動、溫度等數據,提前72小時預警故障,使產線綜合效率(OEE)提升18%。在深圳某智慧交通項目中,倍聯德部署的5G邊緣計算節點實時處理路口攝像頭數據,結合AI算法優化信號燈配時,使高峰時段擁堵指數下降30%。同時,邊緣節點通過5G網絡與云端協同,實現跨區域交通流量預測,為城市規劃提供數據支撐。邊緣計算使得物聯網設備可以更加高效地協同工作。廣東超市...
在自動駕駛、工業控制等場景,性能不足的代價可能是災難性的。例如:自動駕駛:車輛需在10毫秒內完成路況感知與決策,云端處理延遲達200毫秒以上,根本無法滿足需求。工業質檢:某電子廠采用云端AI質檢時,因網絡延遲導致缺陷產品漏檢率高達15%,改用邊緣計算后漏檢率降至0.3%。智慧醫療:遠程手術中,100毫秒的延遲就可能造成手術器械操作偏差,邊緣計算將延遲壓縮至10毫秒以內,保障了手術精度。“性能是邊緣計算的立身之本,但成本控制決定其能否規模化落地。”倍聯德CTO李明指出。倍聯德方案:四維驅動成本與性能的黃金平衡作為邊緣計算領域的先進企業,倍聯德通過技術創新與生態協同,構建了“硬件優化、軟件智能、網...
邊緣計算資源有限,攻擊者利用僵尸網絡發起低頻高并發攻擊,可輕易耗盡邊緣節點算力。2024年某智能電網試點項目中,攻擊者通過偽造海量電力負荷數據請求,導致區域邊緣控制中心癱瘓2小時,影響10萬戶供電。更隱蔽的攻擊方式是針對邊緣AI模型的“數據投毒”,通過篡改訓練數據使模型誤判,某自動駕駛測試場曾因此發生碰撞事故。邊緣設備部署環境復雜,從工廠車間到野外基站,物理防護措施薄弱。某油田的邊緣數據采集終端因未安裝防拆報警裝置,被不法分子直接拔除硬盤,導致地質勘探數據長久丟失。供應鏈環節同樣存在風險,某邊緣服務器廠商因使用被篡改的固件,導致交付的200臺設備均預置后門。邊緣計算正在成為5G網絡的重要支撐技...
邊緣計算的部署成本遠不止硬件采購那么簡單。根據行業調研,企業需承擔四大重要成本:硬件成本:邊緣節點需部署專業用服務器、智能網關等設備,單個節點成本數萬元至數十萬元不等。例如,某汽車工廠部署200個邊緣節點,硬件總投入超千萬元。網絡成本:5G專網或工業以太網建設成本高昂,且需持續支付帶寬租賃費用。某物流園區測試顯示,5G網絡年費用占邊緣計算總成本的30%。運維成本:邊緣節點分散部署,需專業團隊進行設備巡檢、故障修復和軟件更新,人力成本較集中式數據中心高40%。能源成本:邊緣設備24小時運行,電力消耗和冷卻系統費用占運營成本的25%以上。邊緣計算設備的部署位置對于其性能至關重要。廣東超市邊緣計算一...
在人工智能(AI)技術向千行百業滲透的浪潮中,邊緣計算正從“配角”躍升為“重要引擎”。據IDC預測,到2026年,全球邊緣計算市場規模將突破1200億美元,其中與AI的深度融合占比將超過60%。這一趨勢背后,是行業對“低延遲、高隱私、低成本”的迫切需求。作為國家高新企業,深圳市倍聯德實業有限公司憑借其在邊緣計算與AI領域的創新實踐,率先構建了一套“云端訓練+邊緣推理”的分工策略,為智能制造、智慧醫療、自動駕駛等領域提供了可復制的解決方案。邊緣計算為應急響應和災難管理提供了實時的數據處理能力。主流邊緣計算設備邊緣計算將數據處理下沉至設備端,導致敏感數據(如工業控制指令、用戶健康信息)在邊緣節點集...
針對中小企業的算力需求,倍聯德推出全球初款24重要Atom架構緊湊型邊緣服務器,其功耗只350W,卻可支持8路1080P視頻流實時分析。在浙江某紡織企業的質量檢測場景中,該設備替代傳統工控機后,使單條生產線部署成本從15萬元降至3.8萬元,同時將布匹瑕疵檢出率從82%提升至98%。“邊緣計算不是‘高級玩具’,必須讓中小企業用得起。”倍聯德產品總監張華強調。其HID系列醫療平板更通過UL60601-1醫療認證,在基層醫院實現心電圖、超聲影像的本地化AI分析,使單臺設備診斷效率相當于3名主治醫師,而采購成本只為進口設備的1/5。邊緣計算的發展需要跨行業的合作與協同。高性能邊緣計算生態自動駕駛系統依...
隨著AI大模型向邊緣端遷移,倍聯德正布局兩大方向:邊緣大模型:研發千億參數模型的輕量化版本,支持在邊緣設備上運行多模態推理任務。6G-邊緣融合:與華為合作研發太赫茲通信模塊,結合TSN時間敏感網絡,為L5級自動駕駛提供10Gbps級實時數據傳輸能力。“邊緣計算不是云端的替代者,而是AI能力的延伸。”倍聯德CTO李明表示,“通過精確的分工策略,我們正在讓每一輛自動駕駛汽車、每一臺工業機器人都擁有一個‘本地化超級大腦’。”在這場智能變革中,邊緣計算與AI的深度融合,正重新定義技術與產業的邊界。電信運營商通過邊緣計算拓展B2B業務,為行業客戶提供定制化解決方案。園區邊緣計算使用方向倍聯德積極參與邊緣...
當前,云廠商正加速布局邊緣服務:AWS Wavelength將計算資源嵌入5G基站,Azure Edge Zones實現數據中心與邊緣節點的無縫對接,華為FusionEdge平臺支持邊云應用統一開發。隨著AI大模型向邊緣端遷移,未來三年,邊緣設備的推理能力將提升10倍,而云端將聚焦于千億參數模型的訓練與優化。在這場計算范式的變革中,邊緣計算與云計算如同數字世界的“左右腦”——前者以毫秒級響應守護生命安全與生產效率,后者以海量算力探索宇宙奧秘與人類未來。兩者的深度融合,正推動各行各業邁向“實時智能”的新紀元。邊緣計算有助于減少數據中心的流量負載。無風扇系統邊緣計算供應商在數字化轉型浪潮中,邊緣計...
在自動駕駛技術加速落地的進程中,一場關于“數據傳輸效率”與“決策時效性”的博弈正成為行業重要挑戰。傳統云計算模式下,車輛傳感器產生的海量數據需上傳至云端處理,往返延遲常導致緊急制動響應滯后數百毫秒,而這一毫秒級差距在高速行駛場景中可能引發致命事故。在此背景下,邊緣計算技術通過“本地化智能”重構數據處理范式,為自動駕駛系統提供了低延遲、高可靠的實時決策支持。作為國家高新的技術企業,深圳市倍聯德實業有限公司憑借其在邊緣計算領域的深厚積累,正成為推動這一技術變革的關鍵力量。邊緣節點的重要功能包括數據預處理、緩存加速和輕量級分析,從而減輕云端負擔。廣東ARM邊緣計算云平臺傳統AI大模型訓練依賴云端算力...
便攜式醫療設備通過邊緣計算實現本地生命體征分析,在斷網情況下仍能持續監測患者心率、血氧等指標。某三甲醫院的心電監護儀采用邊緣架構后,室顫識別延遲從15秒縮短至0.5秒,為急救爭取了黃金時間。此外,手術機器人的邊緣計算模塊可實時處理4K影像數據,確保主刀醫生操作的精確性。隨著5G與AI技術的融合,邊緣計算與云計算正從“替代競爭”轉向“協同共生”。在智能電網場景中,邊緣節點實時監測變壓器溫度,云端平臺分析歷史數據預測設備壽命;在智慧農業領域,田間傳感器通過邊緣計算控制灌溉系統,云端AI模型優化種植方案。據IDC預測,到2026年,80%的企業將采用邊云協同架構,其數據處理效率較單一模式提升3倍以上...
邊緣計算在自動駕駛場景中如何解決數據傳輸與決策時效性矛盾?隨著AI大模型向邊緣端遷移,倍聯德正布局兩大方向:邊緣大模型:將千億參數模型壓縮至邊緣設備可運行范圍,實現本地化智能決策。6G-邊緣融合:研發太赫茲通信模塊,支持10Gbps級實時數據傳輸,為L5級自動駕駛提供技術儲備。“邊緣計算的目標,是讓企業以云計算的成本享受超實時的性能。”倍聯德CEO王偉表示。在這場成本與性能的博弈中,倍聯德正以技術創新重新定義游戲規則,推動邊緣計算從“貴族技術”走向普惠化應用。邊緣計算為農業智能化提供了有力的技術支持。廣東社區邊緣計算視頻分析針對中小企業的算力需求,倍聯德推出全球初款24重要Atom架構緊湊型邊...
面對企業跨園區、跨地域的算力調度需求,倍聯德創新提出“中心云-邊緣云-終端設備”三級協同架構。其自主研發的MEC編排器可動態分配算力資源:在深圳某三甲醫院的遠程手術場景中,系統自動將4K影像渲染任務分配至院內邊緣節點,而AI病理分析模型則運行于云端,使單臺手術數據傳輸量減少92%,同時保障99.99%的可靠性。這一架構的突破性在于“算力隨需而動”。在東莞某電子廠的柔性生產線改造項目中,倍聯德方案支持200個邊緣節點根據訂單類型自動切換算法模型,使產線換型時間從4小時縮短至15分鐘,設備綜合效率(OEE)提升18%。邊緣計算正在改變我們對實時通信系統的理解。廣東緊湊型系統邊緣計算生態傳統AI大模...
倍聯德與華為合作研發的5G邊緣計算網關,支持時間敏感網絡(TSN)協議:確定性傳輸:在工業場景中實現微秒級時鐘同步,確保控制指令的零丟包傳輸。帶寬優化:通過數據特征提取技術,將原始數據量壓縮90%以上,某光伏電站項目年節省帶寬成本超千萬元。多網協同:支持5G/Wi-Fi 6/有線網絡自動切換,在弱網環境下仍能保障關鍵任務連續性。倍聯德編排平臺實現邊緣設備的全生命周期管理:遠程更新:支持批量推送安全補丁與算法模型,單次更新耗時從2小時縮短至5分鐘。安全防護:集成國密SM2/SM4加密算法與區塊鏈存證,通過等保2.0三級認證,數據泄露風險降低90%。智能巡檢:通過數字孿生技術模擬設備運行狀態,減少...
在人工智能(AI)技術向千行百業滲透的浪潮中,邊緣計算正從“配角”躍升為“重要引擎”。據IDC預測,到2026年,全球邊緣計算市場規模將突破1200億美元,其中與AI的深度融合占比將超過60%。這一趨勢背后,是行業對“低延遲、高隱私、低成本”的迫切需求。作為國家高新企業,深圳市倍聯德實業有限公司憑借其在邊緣計算與AI領域的創新實踐,率先構建了一套“云端訓練+邊緣推理”的分工策略,為智能制造、智慧醫療、自動駕駛等領域提供了可復制的解決方案。邊緣計算正在成為未來工業互聯網的重要趨勢。廣東機架式系統邊緣計算報價倍聯德技術已深度融入自動駕駛全鏈條:車路協同:在無錫國家的車聯網先導區,倍聯德部署的路側邊...
邊緣計算資源有限,攻擊者利用僵尸網絡發起低頻高并發攻擊,可輕易耗盡邊緣節點算力。2024年某智能電網試點項目中,攻擊者通過偽造海量電力負荷數據請求,導致區域邊緣控制中心癱瘓2小時,影響10萬戶供電。更隱蔽的攻擊方式是針對邊緣AI模型的“數據投毒”,通過篡改訓練數據使模型誤判,某自動駕駛測試場曾因此發生碰撞事故。邊緣設備部署環境復雜,從工廠車間到野外基站,物理防護措施薄弱。某油田的邊緣數據采集終端因未安裝防拆報警裝置,被不法分子直接拔除硬盤,導致地質勘探數據長久丟失。供應鏈環節同樣存在風險,某邊緣服務器廠商因使用被篡改的固件,導致交付的200臺設備均預置后門。邊緣計算框架通常融合了物聯網、AI和...
作為行業先行者,倍聯德構建了覆蓋硬件、算法、系統的全棧解決方案:異構計算架構:其E500系列邊緣服務器采用Intel?Xeon?D系列處理器與NVIDIA Jetson AGX Orin GPU的混合架構,支持16路4K視頻實時分析,算力密度較傳統方案提升3倍。在蘇州工業園區自動駕駛測試場,該設備可同時處理200路攝像頭數據,目標檢測準確率達99.2%。聯邦學習框架:針對數據隱私保護需求,倍聯德開發了分布式聯邦學習平臺。在廣州智能網聯汽車示范區,100輛測試車通過邊緣節點共享模型參數,在保護原始數據的前提下,將雨霧天氣下的行人識別準確率從78%提升至92%。動態資源調度:基于強化學習的資源分配...
在智能安防場景中,倍聯德開發的邊緣攝像頭采用條件計算技術,只在檢測到異常行為時啟動完整的人臉識別模型。測試數據顯示,該方案使設備功耗降低70%,同時保持99.2%的識別準確率。倍聯德的分工策略已在多個領域實現規模化應用:智能制造:為富士康打造的“云+邊+端”協同平臺,通過邊緣設備實時處理200路攝像頭數據,結合云端全局優化,使產線綜合效率(OEE)提升18%,年節省成本超2000萬元。智慧醫療:HID系列醫療平板集成邊緣AI芯片,可在本地完成心電圖異常檢測,結果上傳云端前自動消除敏感,使基層醫院診斷準確率提升至三甲醫院水平的92%。自動駕駛:與某車企合作的5G無人公交項目,通過路側邊緣計算節點...