電池箱內部的高壓電路與控制模塊易產生電磁干擾(EMI),同時也需抵御外部電磁輻射,其 EMC 設計直接影響系統穩定性。抑制電磁輻射的措施包括:箱體采用導電性能優異的材料(如紫銅網屏蔽層),接縫處涂抹導電膏(導電率≥1S/m),形成法拉第籠,屏蔽效能≥60dB(100MHz-1GHz 頻段);高壓線束采用雙絞線(絞距≤10mm),減少差模輻射;控制模塊 PCB 板鋪設接地平面,降低共模干擾。抵御外部干擾方面:信號線采用屏蔽線(鋁箔 + 編織網雙層屏蔽),兩端接地;敏感電路(如 BMS 芯片)加裝磁珠(阻抗≥100Ω@100MHz),濾除高頻噪聲;電源接口設置 EMI 濾波器(插入損耗≥40dB)...
新能源汽車動力電池箱的結構設計需深度匹配車輛底盤布局,形成 “空間利用率” 與 “安全冗余” 的動態平衡。主流車型采用下置式布局,箱體通過強度高的螺栓與車身縱梁連接,底部配備防撞橫梁(抗拉強度≥1000MPa),可抵御 10kN 以上的沖擊載荷。內部采用 “電芯 - 模組 - Pack” 三級架構:電芯通過激光焊接固定于模組支架,模組間預留 5-8mm 緩沖間隙(填充阻燃泡棉),整體通過導軌滑入箱體內腔,便于后期維護更換。為適配不同車型,電池箱衍生出多種形態:轎車多采用平板式箱體(高度≤150mm),以降低重心;SUV 則允許更高的箱體高度(200-250mm),可容納更多電芯;商用車(如客車...
電池箱的散熱效率直接影響電池循環壽命與安全性。主動散熱方案常采用軸流風扇或液冷管路,風扇安裝于箱體側部或頂部,通過溫度傳感器聯動,當內部溫度超過 45℃時自動啟動,形成從進風口到出風口的定向氣流。被動散熱則依賴箱體表面的鰭片結構,增大散熱面積,配合導熱硅膠將電池熱量傳導至箱壁。部分高級電池箱集成 PTC 加熱器,在環境溫度低于 0℃時啟動,避免電解液凝固影響充放電性能。溫控系統通過 CAN 總線與 BMS(電池管理系統)通信,實時監測箱內溫度梯度,當局部溫差超過 5℃時調節散熱功率,確保電芯工作在 15-35℃的理想區間,降低熱失控風險。 軌道交通用電池箱需通過鹽霧測試,抵御長期戶外腐蝕。...
熱管理系統的精確調控:高效熱管理是電池箱穩定運行的關鍵。液冷系統采用蛇形微通道冷板,與電芯底面緊密貼合,接觸熱阻<0.1℃?cm2/W。冷卻液選用 50% 乙二醇溶液,流量控制在 4-6L/min,通過 PID 算法動態調節水泵轉速,使電芯溫差控制在 ±3℃內。當檢測到局部溫度超 45℃時,啟動應急散熱模式,流量瞬間提升至 8L/min,配合箱體側部散熱鰭片,散熱功率可達 2kW。低溫環境下,PTC 加熱器可提供 500W 加熱功率,使電池從 - 30℃升至 25℃的時間縮短至 15 分鐘。電池箱的電芯均衡電路可保證各節電芯電壓一致性,延長壽命。中山IOK電池箱源頭廠家極端環境下的電池箱需特殊...
電池箱作為電化學儲能系統的物理載體,是連接電池單體與外部應用的關鍵樞紐,其關鍵功能遠超單純的 “容納” 范疇。在結構層面,它需通過精確的模塊化設計固定電芯(或電池組),避免振動導致的極耳斷裂、隔膜破損等安全隱患;在防護層面,需滿足 IP65 及以上防護等級,通過密封膠條與防水透氣閥的組合,隔絕粉塵與液態水侵入,同時平衡箱內氣壓。更重要的是,電池箱承擔著熱管理中介角色 —— 內部預留的散熱通道需與電芯殼體或液冷板緊密貼合,配合箱壁的隔熱層(如氣凝膠氈),將工作溫度控制在 15-35℃的區間。無論是新能源汽車的動力電池箱,還是儲能電站的集裝箱式電池箱,其設計均需兼顧機械強度、熱失控防護與電絕緣性能...
隨著電化學儲能技術的迭代,電池箱正朝著“安全大化、能效優化、功能多元化”方向創新。安全方面,將引入“預判式防護”:通過AI算法分析電芯歷史數據(如循環次數、溫度波動),預測熱失控風險,在故障發生前主動切斷電源;采用自修復材料(如形狀記憶合金密封件),在輕微泄漏時自動封堵,延緩故障擴大。能效提升聚焦“全鏈路熱管理”:利用熱電制冷(Peltier效應)實現精確控溫(溫差±0.5℃),配合熱泵技術回收廢熱,使整體能效提升至98%以上;箱體材料研發向“結構-功能一體化”發展,如兼具承載與導熱功能的石墨烯復合材料,重量比鋁合金輕30%,導熱系數提升50%。功能拓展方面,電池箱將成為“能源節點”:集成儲能...
電池箱作為儲能電池的關鍵承載與保護裝置,其基礎構造需兼顧結構強度與安全防護。外殼多采用 ABS 工程塑料、玻璃鋼或冷軋鋼板,厚度通常在 2-5mm,具備抗沖擊、耐腐蝕特性。內部設有電池固定架,通過緩沖墊與限位槽固定電芯模塊,避免振動導致的電極接觸不良。箱體內壁常貼覆防火棉或阻燃涂層,耐火等級需達到 UL94 V-0 標準,延緩高溫蔓延。防水設計是關鍵,接縫處采用硅膠密封圈,出線口配備防水格蘭頭,整體防護等級多為 IP65,可抵御雨水浸泡與粉塵侵入。此外,箱門配備氣壓撐桿與防盜鎖具,既方便檢修又防止非授權開啟,確保電池組在復雜環境中穩定運行。電池箱的外殼需做絕緣處理,避免殼體帶電造成安全隱患。廣...
新能源汽車動力電池箱的結構設計需深度匹配車輛底盤布局,形成 “空間利用率” 與 “安全冗余” 的動態平衡。主流車型采用下置式布局,箱體通過強度高的螺栓與車身縱梁連接,底部配備防撞橫梁(抗拉強度≥1000MPa),可抵御 10kN 以上的沖擊載荷。內部采用 “電芯 - 模組 - Pack” 三級架構:電芯通過激光焊接固定于模組支架,模組間預留 5-8mm 緩沖間隙(填充阻燃泡棉),整體通過導軌滑入箱體內腔,便于后期維護更換。為適配不同車型,電池箱衍生出多種形態:轎車多采用平板式箱體(高度≤150mm),以降低重心;SUV 則允許更高的箱體高度(200-250mm),可容納更多電芯;商用車(如客車...
極端環境下的電池箱需特殊設計用以保障可靠性。高原地區使用的電池箱需要補償氣壓,通過透氣膜平衡內外氣壓,避免密封失效,同時電器元件滿足海拔 5000 米的絕緣要求。高溫沙漠環境的電池箱采用雙層殼體設計,中間填充隔熱棉,反射率達 80% 的鋁箔層可減少太陽輻射熱吸收,內部風扇轉速提升至 3000rpm 增強散熱。寒冷地區的電池箱則配備伴熱帶,在 - 30℃環境下可將箱內溫度維持在 10℃以上,配合低冰點電解液,確保電池容量保持率≥80%。。電池箱的安裝支架需具備防震緩沖結構,減少長期振動損傷。東莞3U電池箱低溫環境(如 - 20℃以下)會導致電芯活性下降、容量驟減,電池箱需通過預熱與保溫設計維持其...
電池箱作為儲能與動力系統的關鍵載體,其架構設計需平衡功能性與安全性。典型由箱體結構、電芯集群、管理系統、熱控模塊及接口單元構成有機整體。箱體采用分層設計,底層為承重框架,中層為電芯容納艙,頂層為控制與接口區。電芯電芯通過串并聯串并聯形成模組,通過銅排連接實現能量傳導,模組間預留 5-8mm 緩沖間隙以應對熱膨脹。管理系統集成電壓采集、溫度傳感與均衡電路,實時通過 CAN 總線與外部系統通信。接口單元包含高壓輸出、低壓控制與冷卻液接口,采用防水航空插頭,防護等級達 IP6K9K,確保在濕熱、粉塵環境下可靠運行。光伏儲能電池箱需與逆變器協同工作,實現電能的高效轉換。深圳光伏電池箱生產廠家動力電池箱...
為響應碳中和目標,電池箱的回收與再利用設計已成為行業重要標準,貫穿產品全生命周期。材料選擇優先考慮可回收性:金屬部件(鋁、鋼)占比≥80%,且避免異種材料混合焊接(如鋁鋼異種金屬焊接會增加分離難度);塑料部件標注材質代碼(如 ABS、PP),便于分類回收。結構設計注重可拆卸性:采用標準化螺栓連接(而非焊接),關鍵部位設置專門的拆卸工具接口;模組與箱體的連接采用 “快插快拔” 結構,拆卸時間≤30 分鐘 / 箱。回收流程分為三級:一級回收(箱體復用),對結構完好的箱體進行清潔、檢測后,重新裝配新電芯用于低速車或儲能場景;二級回收(材料再生),對損壞箱體進行破碎、分選,鋁合金可熔煉重鑄(回收率≥9...
電池箱作為電化學儲能系統的物理載體,是連接電池單體與外部應用的關鍵樞紐,其關鍵功能遠超單純的 “容納” 范疇。在結構層面,它需通過精確的模塊化設計固定電芯(或電池組),避免振動導致的極耳斷裂、隔膜破損等安全隱患;在防護層面,需滿足 IP65 及以上防護等級,通過密封膠條與防水透氣閥的組合,隔絕粉塵與液態水侵入,同時平衡箱內氣壓。更重要的是,電池箱承擔著熱管理中介角色 —— 內部預留的散熱通道需與電芯殼體或液冷板緊密貼合,配合箱壁的隔熱層(如氣凝膠氈),將工作溫度控制在 15-35℃的區間。無論是新能源汽車的動力電池箱,還是儲能電站的集裝箱式電池箱,其設計均需兼顧機械強度、熱失控防護與電絕緣性能...
電池箱材料選擇需平衡強度、成本與功能性。ABS 塑料箱適合小型電池組,具備良好的注塑成型性,成本只為金屬箱的 60%,但長期使用溫度需控制在 - 40℃至 80℃。玻璃鋼箱抗腐蝕性能優異,耐酸堿等級達 C2 標準,適用于海上風電儲能系統,但其剛性模量較低,需內部加筋增強。冷軋鋼板箱經磷化與噴塑處理,鹽霧測試可達 1000 小時,抗拉強度≥345MPa,常用于工業級儲能項目。新型復合材料如碳纖維增強 PP,比強度是鋼的 5 倍,且具備電磁屏蔽功能,逐漸應用于高級動力電池箱,不過材料成本仍制約大規模普及。家用儲能電池箱支持峰谷電價套利,降低用戶用電成本。中山儲能電池箱訂制電池箱的安全體系包含主動預...
現代電池箱已從單純的物理載體升級為 “智能終端”,通過集成傳感器與通信模塊實現狀態感知與遠程管理。關鍵監控參數包括:電芯溫度(精度 ±0.5℃,采樣頻率 1Hz)、單體電壓(分辨率 1mV)、箱內氣壓(用于檢測電芯泄漏)、振動加速度(判斷安裝穩定性)等。數據通過 CAN 總線或 4G/5G 模塊傳輸至云端平臺,運維人員可實時查看箱體狀態,當檢測到異常(如溫度驟升 5℃/min)時,系統自動推送報警信息(響應時間≤10 秒)。功能擴展方面,部分電池箱集成定位模塊(GPS / 北斗雙模),適合移動場景(如物流車電池)的資產追蹤;儲能電池箱則增加煙霧傳感器與氣體探測器(檢測 CO、H2 等特征氣體)...
電池箱在運輸、安裝及使用過程中需承受持續振動與突發沖擊,其防護設計需覆蓋全生命周期的力學載荷。振動防護通過多級緩沖實現:電芯與模組之間采用硅膠墊(硬度 50-60 Shore A),可吸收 10-2000Hz 的高頻振動;模組與箱體之間安裝彈簧減震器(阻尼系數 0.2-0.3),衰減低頻共振(1-10Hz),尤其適合商用車(如卡車)的顛簸路況。沖擊防護則聚焦結構強度:箱體框架采用矩形鋼管焊接(壁厚 3-5mm),形成抗扭剛度≥10^4 N?m/rad 的承載結構;邊角部位加裝加強筋(截面尺寸≥20mm×20mm),在 100G 加速度的沖擊下(如車輛碰撞)仍能保持形狀完整。針對動力電池箱,還需...
熱管理系統的精確調控:高效熱管理是電池箱穩定運行的關鍵。液冷系統采用蛇形微通道冷板,與電芯底面緊密貼合,接觸熱阻<0.1℃?cm2/W。冷卻液選用 50% 乙二醇溶液,流量控制在 4-6L/min,通過 PID 算法動態調節水泵轉速,使電芯溫差控制在 ±3℃內。當檢測到局部溫度超 45℃時,啟動應急散熱模式,流量瞬間提升至 8L/min,配合箱體側部散熱鰭片,散熱功率可達 2kW。低溫環境下,PTC 加熱器可提供 500W 加熱功率,使電池從 - 30℃升至 25℃的時間縮短至 15 分鐘。移動電源電池箱常配備 Type-C 接口,支持多設備同時快充。浙江熱插拔電池箱源頭廠家便攜式電池箱(如戶...
在熱帶地區或工業高溫場景,電池箱需通過針對性設計抑制環境溫度對電芯性能的影響。被動隔熱是基礎方案:箱體采用三層結構 —— 外層為反射率≥0.8 的鋁箔層(反射太陽輻射熱),中間為 50mm 厚的離心玻璃棉(導熱系數≤0.03W/m?K),內層為鋁制輻射屏(減少箱內紅外輻射),可使箱內溫度比外界低 15-20℃。主動降溫則采用強化散熱:側面安裝耐高溫軸流風扇(耐溫≥120℃),配合頂部的熱氣出口,形成 “下進上出” 的強制對流;部分高級型號采用液冷 + 空調復合系統,在環境溫度達 60℃時,仍能將箱內溫度控制在 35℃以下。此外,電芯布局采用 “蜂窩狀” 排列,模組間預留 10-15mm 風道,...
電池箱的散熱效率直接影響電池循環壽命與安全性。主動散熱方案常采用軸流風扇或液冷管路,風扇安裝于箱體側部或頂部,通過溫度傳感器聯動,當內部溫度超過 45℃時自動啟動,形成從進風口到出風口的定向氣流。被動散熱則依賴箱體表面的鰭片結構,增大散熱面積,配合導熱硅膠將電池熱量傳導至箱壁。部分高級電池箱集成 PTC 加熱器,在環境溫度低于 0℃時啟動,避免電解液凝固影響充放電性能。溫控系統通過 CAN 總線與 BMS(電池管理系統)通信,實時監測箱內溫度梯度,當局部溫差超過 5℃時調節散熱功率,確保電芯工作在 15-35℃的理想區間,降低熱失控風險。 電池箱的運輸包裝需符合危險品運輸標準,防止途中意外...
隨著新能源產業對能效的追求,電池箱正朝著 “輕量化” 與 “集成化” 方向演進,直接推動整車或儲能系統的性能提升。輕量化方面,材料創新是關鍵路徑:第三代鋁鋰合金(如 2195 系)比傳統鋁合金減重 10%-15%,且抗拉強度提升至 450MPa 以上,已在高級電動車電池箱中應用;碳纖維復合材料(CFRP)通過樹脂傳遞模塑(RTM)工藝成型,箱體重量只為鋼制方案的 1/5,但成本仍較高,主要用于賽車或特種車輛。集成化則體現在結構簡化:傳統 “電池箱 + 底盤” 的分體設計正被 “電池底盤一體化” 取代,例如特斯拉 4680 電池箱直接作為車身結構件,省去傳統底盤橫梁,使系統能量密度提升 10% ...
新能源汽車動力電池箱的結構設計需深度匹配車輛底盤布局,形成 “空間利用率” 與 “安全冗余” 的動態平衡。主流車型采用下置式布局,箱體通過強度高的螺栓與車身縱梁連接,底部配備防撞橫梁(抗拉強度≥1000MPa),可抵御 10kN 以上的沖擊載荷。內部采用 “電芯 - 模組 - Pack” 三級架構:電芯通過激光焊接固定于模組支架,模組間預留 5-8mm 緩沖間隙(填充阻燃泡棉),整體通過導軌滑入箱體內腔,便于后期維護更換。為適配不同車型,電池箱衍生出多種形態:轎車多采用平板式箱體(高度≤150mm),以降低重心;SUV 則允許更高的箱體高度(200-250mm),可容納更多電芯;商用車(如客車...
極端環境下的電池箱需特殊設計用以保障可靠性。高原地區使用的電池箱需要補償氣壓,通過透氣膜平衡內外氣壓,避免密封失效,同時電器元件滿足海拔 5000 米的絕緣要求。高溫沙漠環境的電池箱采用雙層殼體設計,中間填充隔熱棉,反射率達 80% 的鋁箔層可減少太陽輻射熱吸收,內部風扇轉速提升至 3000rpm 增強散熱。寒冷地區的電池箱則配備伴熱帶,在 - 30℃環境下可將箱內溫度維持在 10℃以上,配合低冰點電解液,確保電池容量保持率≥80%。。電池箱的結構強度需適配運輸振動標準,避免電芯因顛簸受損。珠海3U電池箱批發廠家現代電池箱已升級為 “智能終端”,通過多維感知與 AI 算法實現全生命周期管理。感...
電池箱內部的高壓電路與控制模塊易產生電磁干擾(EMI),同時也需抵御外部電磁輻射,其 EMC 設計直接影響系統穩定性。抑制電磁輻射的措施包括:箱體采用導電性能優異的材料(如紫銅網屏蔽層),接縫處涂抹導電膏(導電率≥1S/m),形成法拉第籠,屏蔽效能≥60dB(100MHz-1GHz 頻段);高壓線束采用雙絞線(絞距≤10mm),減少差模輻射;控制模塊 PCB 板鋪設接地平面,降低共模干擾。抵御外部干擾方面:信號線采用屏蔽線(鋁箔 + 編織網雙層屏蔽),兩端接地;敏感電路(如 BMS 芯片)加裝磁珠(阻抗≥100Ω@100MHz),濾除高頻噪聲;電源接口設置 EMI 濾波器(插入損耗≥40dB)...
模塊化設計使電池箱具備靈活擴展能力,單個標準模塊容量通常為 5kWh-10kWh,通過并機接口實現多箱聯動,可擴展至 1MWh 級儲能系統。接口標準化是關鍵,行業逐步統一直流輸入輸出接口規格,如采用 MC4 連接器或高壓接插件,確保不同品牌電池箱的兼容性。尺寸標準化方面,遵循 IEC 62933 標準,箱體寬度統一為 600mm 或 800mm,便于集裝箱集成。模塊化還簡化了維護流程,單個故障模塊可單獨更換,不影響整體系統運行,使維護成本降低 40% 以上。。軌道交通用電池箱需通過鹽霧測試,抵御長期戶外腐蝕。浙江2U電池箱外殼水下設備(如水下機器人、海洋監測儀器)用電池箱需同時滿足防水、耐壓與...
新能源汽車動力電池箱的結構設計需深度匹配車輛底盤布局,形成 “空間利用率” 與 “安全冗余” 的動態平衡。主流車型采用下置式布局,箱體通過強度高的螺栓與車身縱梁連接,底部配備防撞橫梁(抗拉強度≥1000MPa),可抵御 10kN 以上的沖擊載荷。內部采用 “電芯 - 模組 - Pack” 三級架構:電芯通過激光焊接固定于模組支架,模組間預留 5-8mm 緩沖間隙(填充阻燃泡棉),整體通過導軌滑入箱體內腔,便于后期維護更換。為適配不同車型,電池箱衍生出多種形態:轎車多采用平板式箱體(高度≤150mm),以降低重心;SUV 則允許更高的箱體高度(200-250mm),可容納更多電芯;商用車(如客車...
電池箱的材料選擇是技術與成本的精妙平衡,需同時滿足機械強度、耐腐蝕性、導熱性與輕量化需求。動力電池箱優先采用 5 系鋁合金(如 5083-H111),經 T6 熱處理后抗拉強度達 300MPa 以上,配合 0.8mm 厚的陽極氧化層,耐鹽霧性能提升至 1000 小時,且比鋼制箱體減重 40%,直接提升車輛續航。儲能電池箱則多用 Q355B 低合金高強度鋼,通過焊接形成框架結構,抗扭剛度達 1.2×10?N?m/rad,可承受 150kN 的擠壓載荷,適合戶外長期部署。特種場景中,玻璃纖維增強聚丙烯(GFRPP)箱體憑借耐化學腐蝕特性,成為海洋儲能系統的選擇,其熱變形溫度達 120℃,可抵御海水...
隨著新能源產業對能效的追求,電池箱正朝著 “輕量化” 與 “集成化” 方向演進,直接推動整車或儲能系統的性能提升。輕量化方面,材料創新是關鍵路徑:第三代鋁鋰合金(如 2195 系)比傳統鋁合金減重 10%-15%,且抗拉強度提升至 450MPa 以上,已在高級電動車電池箱中應用;碳纖維復合材料(CFRP)通過樹脂傳遞模塑(RTM)工藝成型,箱體重量只為鋼制方案的 1/5,但成本仍較高,主要用于賽車或特種車輛。集成化則體現在結構簡化:傳統 “電池箱 + 底盤” 的分體設計正被 “電池底盤一體化” 取代,例如特斯拉 4680 電池箱直接作為車身結構件,省去傳統底盤橫梁,使系統能量密度提升 10% ...
小型設備(如無人機、便攜式儀器)用電池箱需在有限空間內實現高效集成,其設計關鍵是 “空間利用率大化”。結構上采用 “電芯 - 箱體” 一體化設計:電芯直接嵌入箱體凹槽(公差控制在 ±0.1mm),省去模組支架,空間利用率提升至 85% 以上(傳統方案約 60%);箱體材料選用強度高的工程塑料(如 PA66+30% 玻纖),通過注塑成型實現復雜結構,壁厚只 1.5-2mm,重量減輕 50%。接口集成化:將充電口、放電口、通信口整合為一個多合一連接器(如 M12 圓形連接器),減少外部凸起;控制電路(保護板、均衡電路)集成于箱蓋內側,通過柔性排線與電芯連接,避免線纜占用空間。熱管理采用微通道設計:...
隨著新能源產業對能效的追求,電池箱正朝著 “輕量化” 與 “集成化” 方向演進,直接推動整車或儲能系統的性能提升。輕量化方面,材料創新是關鍵路徑:第三代鋁鋰合金(如 2195 系)比傳統鋁合金減重 10%-15%,且抗拉強度提升至 450MPa 以上,已在高級電動車電池箱中應用;碳纖維復合材料(CFRP)通過樹脂傳遞模塑(RTM)工藝成型,箱體重量只為鋼制方案的 1/5,但成本仍較高,主要用于賽車或特種車輛。集成化則體現在結構簡化:傳統 “電池箱 + 底盤” 的分體設計正被 “電池底盤一體化” 取代,例如特斯拉 4680 電池箱直接作為車身結構件,省去傳統底盤橫梁,使系統能量密度提升 10% ...
新能源汽車動力電池箱的結構設計需深度匹配車輛底盤布局,形成 “空間利用率” 與 “安全冗余” 的動態平衡。主流車型采用下置式布局,箱體通過強度高的螺栓與車身縱梁連接,底部配備防撞橫梁(抗拉強度≥1000MPa),可抵御 10kN 以上的沖擊載荷。內部采用 “電芯 - 模組 - Pack” 三級架構:電芯通過激光焊接固定于模組支架,模組間預留 5-8mm 緩沖間隙(填充阻燃泡棉),整體通過導軌滑入箱體內腔,便于后期維護更換。為適配不同車型,電池箱衍生出多種形態:轎車多采用平板式箱體(高度≤150mm),以降低重心;SUV 則允許更高的箱體高度(200-250mm),可容納更多電芯;商用車(如客車...
動力電池箱與儲能電池箱在設計上存在明顯差異。車載動力電池箱需滿足輕量化要求,采用鋁合金框架與蜂窩板復合結構,重量較傳統鋼箱減輕 30%,同時通過模態分析優化結構,承受 100G 的沖擊加速度。儲能電池箱則側重容量擴展性,模塊化設計支持 2-16 個電池包串聯,箱體尺寸適配 20 尺或 40 尺集裝箱,底部配備叉車槽與吊裝環,便于規模化部署。家用儲能電池箱體積緊湊,通常為 400mm×300mm×200mm,集成 AC/DC 逆變器,支持壁掛安裝,防護等級可以提升至 IP66 以適應戶外環境。特種車輛電池箱還需通過防磁處理,避免電磁干擾影響通訊設備。退役電池箱經檢測重組后,可降級用于低速車或儲能...