測量結果與幾何結構解耦:由于均勻性,測量結果(探測器讀數)主要取決于樣品的總反射光通量(或漫反射光通量),而對樣品反射光的具體方向分布不敏感(只要所有反射光都進入了球腔)。這正是測量總反射率(8°/d或 d/8° 幾何) 和 漫反射率(去鏡面) 的基礎。作為均勻光源:在球壁上開一個輸出端口,該端口發出的光在空間角度上是高度均勻的(朗伯體特性),且光譜穩定(涂層光譜中性好時)。這種均勻光源是光學傳感器(如相機、光譜儀)輻射定標的理想工具。在LED行業,積分球普遍應用于產品研發、質量控制和光效測試。Spectra-CT 色溫可調積分球量子效率

積分球的內壁應是良好的球兒面。通常要求它相對于理想球面的偏差應不大于內徑的0.2%。球內壁上涂以理想的漫反射材料。以便球內壁各點漫反射均勻。這種漫反射系數接近于1的材料常用是氧化鎂或者是硫酸鋇。并將它們和膠質粘合劑混合均勻以后。噴涂在積分球的內壁上面。其中氧化鎂涂層在可見光譜范圍內的光譜反射比都在99%以上。這樣進入積分球的光經過內壁涂層多次反射。從而在積分球內壁上形成均勻照度。在實驗研究過程當中為獲得較高的測量準確度。積分球的開孔比應盡可能小。開孔比定義為積分球開孔處的球面積與整個球內壁面積之比。積分球的基本原理是光通過采樣口被積分球收集。在積分球內部經過多次反射后非常均勻地散射在積分球內部。Spectra-CT 色溫可調積分球量子效率積分球在航空航天領域用于測試艙內照明、信號燈的光學性能。

下文將從原理、用途及典型場景三方面展開說明。積分球的工作原理:1. 基本結構與材料特性?:積分球通常為空心球體,內壁涂覆高反射率的漫反射材料(如硫酸鋇或聚四氟乙烯),反射率可達98%以上。球壁設有多個開口,分別用于放置待測光源、探測器或輔助光源。這種設計使光線在球體內經過多次反射后形成均勻的漫射光場。?2. 光場均勻化過程?:當光源從輸入孔進入積分球后,光線會在內壁反復反射和散射。由于涂層的朗伯體特性(各方向反射光強度一致),光線分布逐漸均勻化,較終在球內形成穩定的均勻光場。?3. 消除方向性誤差的優勢?:傳統光學測量易受光源方向性影響,而積分球通過漫反射原理消除這一干擾,確保測量結果只反映光源本身的輻射特性。
優化:擋板:光源光直接照射到樣品或探測器(造成巨大誤差)。樣品的鏡面反射光直接進入探測器端口(在測漫反射時)。作用: 擋板是保證均勻性的關鍵結構!它阻擋:設計: 擋板本身應涂覆高反射涂層,其尺寸和位置需精確計算,確保光線必須經過至少一次(通常是多次)球壁反射才能到達目標(樣品或探測器),強制光充分混合。擋板自身也會造成小范圍陰影和不均勻。涂層本身的不完美:問題: 實際涂層反射率 < 100%(有吸收),且可能不是完美的朗伯體或光譜中性(不同波長反射率略有差異)。優化: 選擇較高反射率、較佳朗伯特性和光譜中性的涂層(如Spectralon?優于BaSO?),并定期清潔維護。積分球通過均勻散射光線,能準確測量光源的光通量、色溫等關鍵參數。

積分球是一種內壁涂有白色漫反射材料的反射材料,又稱光度球、光通球等。在球壁上打開一個或多個窗孔,用作進光孔和放置光接收器件的接收孔。積分球的內壁應為良好的球面,通常要求其偏差不大于理想球面內徑的0.2%。球內壁涂有理想的漫反射材料,即漫反射系數接近1的材料。紫外線可見漫反射光譜的測試方法是積分球法。如圖4所示,光源發出的光通過內壁涂有Mgo(或BaSO4.Mgco等)的積分球進入樣品,收集樣品表面的反射光,然后投射到接收器(光電倍增管或光電池),產生電信號,用波長函數記錄在記錄儀上,成為光譜曲線。一般可以在紫外線可見分光光度計上裝配積分球附件來測量紫外線可見漫反射光譜。積分球可用于測量激光光源,但需考慮激光的高能量可能損壞涂層。Spectra-CT 色溫可調積分球傳感器
積分球通常配備光譜儀或光度探頭,用于分析光源的光譜特性和亮度。Spectra-CT 色溫可調積分球量子效率
積分球的典型應用:積分球的典型應用主要包括以下幾個方面:1.光度測量:積分球可以用來測量各種光源的光度,如LED燈、熒光燈、白熾燈等。通過積分球內部的測量設備,可以準確地測量這些光源的光通量、光強度、色溫等光度參數。2.顏色測量:積分球可用于測量物體的顏色,包括反射光和透射光的測量。通過測量物體在不同波長下的反射率和透射率,可以確定物體的顏色特性,如色差、色溫等。3.環境光學測量:積分球可用于測量環境光學參數,如大氣光學、水光學等。在大氣研究中,積分球可用于測量大氣中光的散射、吸收和傳播特性;在水研究中,積分球可用于測量水中光的散射、吸收和穿透特性。Spectra-CT 色溫可調積分球量子效率