從而使用積分球來測量光通量時可使得測量結果更為可靠。積分球可降低并除去由光線地形狀、發散角度。及探測器上不同位置地響應度差異所造成地測量誤差。積分球基本的特征就是光學中較通用儀器的一種。另外光能的應用在各方面都在增多。例如纖維光學、激光技術、照相化學和醫學技術。積分球在這些領域都獲得了普遍的應用。并正在改進和取代那些結構復雜、價格昂貴的光學系統。由于積分球內表面具有超高反射和散射特性。所以它具備有著獨特的接收發射光性能。光在均勻分布的球壁作無規則反射。使能量可以作準確地測量。正由于積分球有此特性。改變它窗口位置及其幾何結構就可以獲得各種不同的應用了。積分球在激光測試中也有獨特用途,如測量激光束的發散角等。輻亮度Helios標準光源測試儀

典型應用場景:1. 均勻光源系統?:積分球可搭配高穩定光源,生成動態范圍可調的均勻光場,用于相機焦平面陣列的像素增益歸一化測試。例如,在智能手機攝像頭生產線上,積分球可快速檢測鏡頭模組的成像均勻性。2. 高精度輻射測量?:在科研領域,積分球用于標定輻亮度計和光譜輻射計。例如,在環境監測中,衛星搭載的光學儀器需定期通過積分球校準,以確保大氣成分數據的可靠性。3. 多波段光譜分析?:積分球支持紫外至紅外波段的光譜測試。在光伏產業中,太陽能電池的光譜響應特性可通過積分球結合單色儀進行精確測量。B光源積分球供應積分球適用于測量激光二極管(LD)的光功率和光束均勻性。

當一束輻通量為Φ(λ)的光源經光孔進入內球半徑為R的積分球內,經涂層多次漫反射后,形成均勻照明。設除投射面外,其余內壁任一點M處的總照度E(λ)可用下表示:式中:E(λ)為M點的總光譜幅照度;ρw(λ)為積分球內壁的光譜反射比;Φ(λ)為進入進入積分球的光譜輻通量;R為積分球內球半徑;f為積分球開口球面面積與積分球總的內反射表面積之比。式中,當一束輻通量進入理想積分球后,除投射面外,球內表面任意點的照度(包括球壁開口處球面上的照度)只是球的幾何尺寸、涂層的漫反射比、進入球的輻通量的函數,而與位置無關。
樣品本身:問題: 樣品會吸收光(反射率<100%),且其放置會遮擋部分球壁。高吸收性或大尺寸樣品會明顯破壞球內光場平衡。優化: 使用盡可能小的樣品,選擇低吸收性的背襯或樣品杯。測量時需用已知反射率的標準板(如>99%的PTFE)進行校準以補償樣品引入的擾動。球體尺寸:大球: 端口/擋板/樣品等對球內總表面積的相對占比更小,對均勻性的相對擾動更小,均勻性更好。但信號較弱(光通量密度低)。小球: 信號強,但端口等附件的影響更明顯,均勻性相對較差。支撐結構與內部物體:任何伸入球腔內部的物體(樣品架、支架、線纜)都會吸收和散射光,破壞均勻性。優化: 設計極簡支撐,使用細線纜,物體表面涂覆高反射涂層。在積分球內部,光線經過無數次反射后,形成近乎完美的均勻光照場。

積分球的主要用途:?1. 光學參數測量?:光通量與色溫測試?:積分球可配合光譜儀或光度探頭,依據國際標準(如LM 79、IEC 62717)測量LED、燈具等光源的總光通量、色坐標及色溫。?反射率與透射率分析?:將待測材料置于積分球內,通過對比入射光與反射/透射光強度,計算材料的反射率或透射率。2. 校準與標定?:傳感器校準?:用于相機CMOS/CCD的平場校正和線性度標定,消除像素響應差異。遙感設備標定?:衛星遙感系統需通過積分球校準光譜響應曲線,確保地面觀測數據的準確性。?3. 工業與科研應用?:LED與激光測試?:評估LED光源的均勻性和光衰特性,或分析激光束的能量分布。質量控制?:在燈具制造中,通過積分球驗證產品是否符合國家標準(如GB/T 24824)。積分球的設計考慮了熱管理,確保長時間測試時光源不會過熱損壞。輻亮度Helios標準光源測試儀
積分球能幫助研究人員探索新型光源材料的光學特性,促進技術創新。輻亮度Helios標準光源測試儀
自《墨經》開始,公元11世紀阿拉伯人伊本·海賽木發明透鏡;公元1590年到17世紀初,詹森和李普希同時單獨地發明顯微鏡;一直到17世紀上半葉,才由斯涅耳和笛卡兒將光的反射和折射的觀察結果,歸結為這里大家所慣用的反射定律和折射定律。積分球的尺寸選擇:積分球的尺寸可以根據實際需求進行選擇,包括直徑和高度。通常根據光源的大小和測量需求來選擇合適的直徑和高度。例如,對于較大的光源或需要較大的測量范圍,可以選擇較大的積分球尺寸。輻亮度Helios標準光源測試儀